PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of the cutting process analytical and simulation methods

Identyfikatory
Warianty tytułu
PL
Modelowanie procesu skrawania - metody analityczne i symulacyjne
Języki publikacji
EN
Abstrakty
EN
The paper presents typical modelling methods of thermal effects in the cutting zone when machining AISI 1045 carbon steel with differently coated carbide tools. The thermophysical properties of the workpiece and tested cutting tool materials were experimentally determined. For multilayer coatings deposited on the carbide tools, the composite layer with equivalent thermophysical properties was applied. Three concepts of modelling of the thermal effects were discriminated, i.e. an analytical algorithm, and FEM and FDM numerical simulations. Selected testing methods were considered in terms of their suitability to evaluate the optimal structures of thermal protective tool coatings and their practical applications.
PL
W artykule przedstawiono metody modelowania oddziaływania cieplnego w strefie skrawania stali niskostopowej AISI 1045 narzędziami węglikowymi z naniesionymi różnymi powłokami ochronnymi. Eksperymentalnie wyznaczono właściwości cieplne badanych materiałów obrabianych i narzędziowych. Zaproponowano, do oznaczenia właściwości wielowarstwowych powłok narzędziowych, wykorzystanie idei powłoki kompozytowej o zastępczych właściwościach cieplnych. Przyjęto trzy koncepcje modelowania oddziaływań cieplnych, których podstawą są wyniki obliczeń z użyciem algorytmu analitycznego, oraz symulacji MES i MRS. Wyniki wybranych metod badawczych poddano analizie dla ustalenia ich przydatności w określeniu optymalnej budowy cieplnych powłok ochronnych i ich zastosowania praktycznego.
Rocznik
Strony
5--29
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
autor
autor
  • Dept. of Manufacturing Engineering and Production Automation. Opole University of Technology, 45-271 Opole 5th Mikolajczyka St., Poland, w.grzesik@po.opole.pl
Bibliografia
  • [1] E.M. TRENT, P.K. WRIGHT: Metal Cutting. 4th ed., Butterwoth-Heinemann, Boston 2000.
  • [2] A.N. REZNIKOV: Thermophysical aspects of metal cutting processes (in Russian). Mashinostroenie, Moscow 1981.
  • [3] W. GRZESIK: Advanced protective coatings for manufacturing and engineering. Hanser Gardner Publications, Cincinnati 2003.
  • [4] W. KÖNIG, R. FRITSCH, D. KAMMERMEIER: Physically vapour deposited coatings on tools: Performance and wear phenomena. Surface and Coatings Technology 49 (1991), 316-324.
  • [5] W. GRZESIK, P. NIESLONY: Thermophysical-property-based selection of coatings for dry machining of carbon and stainless steels. Trans. ASME J. Manufact. Sci. Technol., 125 (2003), 689-695.
  • [6] R. KOMANDURI, Z.B. HOU: Tribology in metal cutting-some thermal issues. Trans. ASME, Journal of Tribology, 123 (2001), 799-815.
  • [7] L. LAZOGLU, Y. ALTINAS: Prediction of tool and chip temperature in continuous metal cutting and milling. Int. J. Mach. Tools Manufact., 42 (2002), 1011-1022.
  • [8] T.H.C. CHILDS, K. MAEKAWA, et al.: Metal cutting. Theory and applications. Arnold, London 2000.
  • [9] W. GRZESIK, P. NIESŁONY: Physics based modelling of interface temperatures in machining with multilayer coated tools at moderate cutting speeds. J. of Machine Tools & Manufacture, 44 (2004), 889-901.
  • [10] W. GRZESIK, P. NIESLONY: A computational approach to evaluate temperature and heat partition in machining with multilayer coated tools. J. Mach. Tools Manufact., 43 (2003), 1311-1317.
  • [11] W. GRZESIK: The influence of thin hard coatings on frictional behaviour in the orthogonal cutting process. Tribol. Int., 33 (2000), 131-140.
  • [12] W. GRZESIK: Experimental investigation of the cutting temperature when turning with coated cutting inserts. J. Mach. Tools Manufact., 39 (1999), 355-369.
  • [13] Charakterystyka stali. Stale do prac w temperaturach podwyższonych i obniżonych. Seria D, Wydawnictwo "Śląsk", Katowice 1984.
  • [14] Material Properties Database, MPDB v6.55, JAHM Software, Inc., 2003.
  • [15] W. GRZESIK: A revised model for predicting surface roughness in turning. Wear, 194 (1996), 143-148.
  • [16] P. NIESLONY: Thermal modelling of the cutting process using fem simulation with updated thermophysical properties of tool materials. Advances in Manufacturing Science and Technology, 32 (2008) 3, 15-25.
  • [17] A.K. BALAJI, V.S. MOHAN: An 'effective cutting tool thermal conductivity' based model for tool-chip contact in machining with multi-layer coated cutting tools. J. Mach. Sci. Technol., 6 (2002) 3, 415-436.
  • [18] Y.-C. YEN, A. JAIN, P. CHIGURUPATI, W.-T. WU, T. ALTAN: Computer simulation of orthogonal cutting using a tool with multiple coatings, Proc. 6th CIRP Inter. Workshop on Modeling of Machining, Hamilton, Ontario 2003, 1-10.
  • [19] G. BOOTHROYD, W.A. KNIGHT: Fundametals of machining and machine tools. Marcel Dekker, New York and Basel 1989.
  • [20] S.S. SILIN: Similarity methods in metal cutting. Mashinostroenie (in Russian), Moscow 1981.
  • [21] M.C. SHAW: Metal cutting principles. Clarendon Press, Oxford 1989.
  • [22] P. NIESŁONY: Modelowanie przepływu ciepła i rozkładu temperatury w strefie skrawania dla ostrzy z twardymi powłokami ochronnymi. Oficyna Wydawnicza Politechniki Opolskiej, Opole 2008.
  • [23] S.M. ATHAVALE, J.S. STRENKOWSKI: Finite element modelling of machining: from proof-of-concept to engineering applications. Mach. Sci. Technol., 2 (1998) 2, 317-342.
  • [24] F. LOCKE, T. BECK, S. HOPPE, T. KRIEG, et al.: Examples of FEM application in manufacturing technology. J. Mater. Process. Technol., 120 (2002) 450-457.
  • [25] M.R. MOVAHHEDY, M.S. GADALA, Y. ALTINTAS: Simulation of chip formation in orthogonal metal cutting process: an ALE finite element approach. Mach. Sci. Technol., 4 (2000) 1, 15-42.
  • [26] Third Wave AdvantEdge 2D User's Manual, Version 5.0, Minneapolis 2006, USA.
  • [27] L.C. LEE, X.D. LIU, K.Y. LAM: Determination of stress distribution on the tool rake face using a composite tool. J. Mach. Tools Manuf., 35 (1995) 3, 373-382.
  • [28] N.N. ZOREV: Interrelation between shear processes occurring along tool face on shear plane in metal cutting. Res. Prod., (1963), 42-49.
  • [29] I. LAZOGLU, Y. ALTINTAS: Prediction of tool and chip temperature in continuous and interrupted machining. Int. J. Mach. Tools Manufact., 42 (2002), 1011-1022.
  • [30] M.A. DAVIES, Q. CAO, A.L. COOKE, R. IVESTER: On the measurement and prediction of temperature fields in machining AISI 1045 steel. Annals of the CIRP 52 (2003) 1, 77-80.
  • [31] A.J.R. SMITH, E.J.A. ARMAREGO: Temperature prediction in orthogonal cutting with a Finite Difference Approach. Annals of the CIRP, 30 (1981) 1, 9-13.
  • [32] C.B. ALUWIHARE, E.J.A. ARMAREGO, A.J.R. SMITH: A predictive model for temperature distributions in "classical" orthogonal cutting. Trans, of NAMRI/SME, 28 (2000), 131-136.
  • [33] H.S. CARSLAW. J.C. JAEGER: Conduction of heat in solids, Oxford University Press, 1980.
  • [34] W. GRZESIK, P. NIESLONY, M. BARTOSZUK: Finite difference analysis of the thermal behaviour of coated tools in orthogonal cutting of steels. J. Mach. Tools Manuf., 44 (2004), 1451-1462.
  • [35] W. GRZESIK, P. NIESLONY, M. BARTOSZUK: Finite difference method-based simulation of temperature fields for application to orthogonal cutting with coated tools. Machining Science and Technology, 9 (2005) 4, 529-546.
  • [36] W. GRZESIK, M. BARTOSZUK: Prediction of temperature distribution in the cutting zone using finite difference approach. 10th CIRP Int. Workshop on Modeling of Machine Operations, Calabria 2007.
  • [37] H.T. YOUNG, T.L. CHOU: Modelling of tool-chip interface temperature distribution in metal cutting. J. Mech. Sci., 36 (1994) 10, 931-943.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS3-0021-0077
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.