PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and properties of nanocrystalline copper - yttria microcomposites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The objective of the work was to investigate changes in structure and properties of Cu-yttria microcomposites which take place in the process of controlled sintering and deformation of materials of nanometric initial structure. Design/methodology/approach: Tests were made with the Cu-yttria micro-composites containing up to 3 % of a hardening phase. These were obtained by powder metallurgy techniques and further deformation. The mechanical properties and microstructure (by the optical, scanning and transmission electron microscopy) were examined. Findings: Analysis of the initial nanocrystalline structure of these materials was made, and its evolution during deformation process was investigated with an account of the changes in the mechanical and electrical properties. Research limitations/implications: The powder metallurgy techniques make it possible to obtain copper-based bulk materials. Globular structure, high porosity and low sintering temperature of this materials result in their limited mechanical properties. Practical implications: A growing trend to use new copper-based functional materials is observed recently world-wide. Within this group of materials particular attention is drawn to dispersion hardened microcomposites with nanometric or submicron grain size of a copper matrix, which exhibit higher mechanical properties. Originality/value: A controlled process of milling compacting, sintering and cold deformation, allow to obtain nanocrystalline copper based materials with improved functional properties.
Rocznik
Strony
83--86
Opis fizyczny
Bibliogr. 15 poz., fot., rys., tab.
Twórcy
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18 a, 44-100 Gliwice, Poland
Bibliografia
  • [1] J.P. Stobrawa, Z. M. Rdzawski, Formation of a stable nanostructure in the copper-based materials, Proceedings of the 11th International Scientific Conference on Contemporary Achievement in Mechanics, Manufacturing and Materials Science, CAM3S'2005, Gliwice-Zakopane (2005) 909-914, (CD-ROM).
  • [2] J.P. Stobrawa, Z.M. Rdzawski, Formation of a stable nanostructure in the copper-based materials, Journal of Materials Processing Technology, (2007), (in press).
  • [3] V. Rajkovic, Copper matrix strengthening in Cu-Al2O3 system by mechanical alloying and milling of pure copper and prealloyed copper powders. Advanced Science and Technology of Sintering (1998) 537-543.
  • [4] D.Y. Ying, D.L. Zhang, D.Y, D.L (2000) Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling, Materials Science and Engineering, 1 (2000) 152-156.
  • [5] A. Zuniga, R. Palma, A. Sepulveda, T. Lobel, L. Nunez, Microstructure and mechanical behavior of Cu-based composites reinforced with WC and TiC particles, prepared by spray forming. Proceedings of the Second International Latin American Conference on Powder Technology, Foz do Iquacu, Brasil, 1999, 542-547.
  • [6] N. Wang, Z. Wang, K.T. Aust, U. Erb, Effect of grain size on mechanical properties of nanocrystalline materials, Acta Metalurgica Materiallia 2c (1995) 519-528.
  • [7] Y.J. Li, X.H. Zeng, W. Blum, Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu, Acta Materialia 52 (2004) 5009-5018.
  • [8] R. Suryanarayanan, A.C. Frey, S.M.L. Sastry, B.E. Waller, W.E. Buhro, Plastic deformation of nanocrystalline Cu and Cu-0,2 wt.% B, Materials Science and Engineering A 264 (1999) 210-214.
  • [9] H. Conrad, Grain size dependence of the plastic deformation kinetics in Cu, Materials Science and Engineering A 341 (2003) 216-228.
  • [10] K.S. Kumar, H.Van Swygenhoven, S. Suresh, Mechanical behaviour of nanocrystalline metals and alloys, Acta Materialia 51 (2003) 5743-5774.
  • [11] S.H. Yoo, T.S. Sudarshan, K. Sethuram, G. Subhash, R.J. Dowding, Consolidation and high strain rate mechanical behaviour of nanocrystalline tantalum powder, Nanostructured Materials 12 (1999) 23-28.
  • [12] D.V. Kudashov, H. Baum, U. Martin, M. Heilmaier, H. Oettel, Microstructure and room temperature hardening ultra-fine-grained oxide-dispersion strengthened copper prepared by cryomilling, Materials Science and Engineering A 387-379 (2004) 768-771.
  • [13] U.F. Kocks, The theory of an abstacle-controlled yield strength, Materials Science and Engineering 27 (1977) 198 - 291.
  • [14] J.P. Stobrawa, Z. M. Rdzawski, Deformation behaviour of dispersion hardened nanocrystalline copper, Journal Achievements in Materials and Manufacturing Engineering, 17 (2006) 153-156.
  • [15] J.P. Stobrawa, Z.M. Rdzawski, Characterization of nanostructured copper - WC materiale, International Journal Materials and Product Technologies (IJMPT) (2007), (in press).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS3-0018-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.