PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of hot-working in the gamma+alpha range on a retained austenite fraction in TRIP-aided steel

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to determine the influence of thermomechanical processing conditions on an austenite stability in a TRIP-aided microalloyed steel. Design/methodology/approach: The heat treatment and thermomechanical processing in a two-phase region to obtain ferritic-bainitic structures with the retained austenite in a low-carbon microalloyed steel were conducted. The heat treatment consisted of austenitizing of specimens at 750 degrees centigrade, oil cooling, isothermal holding in a temperature range from 300 to 500 degrees centigrade and slow cooling to room temperature. A part of the specimens was forged with a degree of deformation of 28% before cooling. Optical and transmission electron microscopy were employed for structure observations. The retained austenite amount was determined by X-ray diffraction method. Findings: It was found that hot-working in the gamma+alpha range contributes to a considerable refinement of a ferritic matrix. The grain size of the alpha phase is about 4 micrometres and its volume fraction equals from 60 to 68%. The optimum structure containing 10% fraction of retained austenite was obtained for the specimen forged in the two-phase region and isothermally held at a temperature of 300 degrees centigrade. Research limitations/implications: To determine with more detail the relationship between hot-working conditions and the stability of retained austenite investigations in a wider deformation temperature range should be carried out. Practical implications: The proposed thermomechanical treatment route can be useful in a development of the technology for TRIP-aided low-carbon microalloyed steels with a reduced silicon content. Originality/value: The design thermomechanical treatment conditions made for obtaining the 10% fraction of retained austenite in a steel containing 0.5% Si only in comparison to 1.5% Si concentration used in TRIP-aided steels usually.
Rocznik
Strony
79--82
Opis fizyczny
Bibligr. 22 poz., fot., rys.
Twórcy
autor
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18 a, 44-100 Gliwice, Poland, adam.grajcar@polsl.pl
Bibliografia
  • [1] R. Torres, J. Esparza, E. Velasco, S. Garcia-Luna, R. Colas, Characterization of an aluminium engine block, International Journal of Microstructure and Materials Properties 1 (2006) 129-138.
  • [2] L. Cizek, M. Greger, L. Pawlica, L.A. Dobrzański, T. Tański, Study of selected properties of magnezium alloy AZ91 after heat treatment and forming, Journal of Materials Processing Technology 157-158 (2004) 466-471.
  • [3] T. Gladman, The Physical Metallurgy of Microalloyed Steels, The University Press, Cambridge, 1997.
  • [4] J. Adamczyk, M. Opiela, Influence of the thermo-mechanical treatment parameters on the inhomogenity of the austenite structure and mechanical properties of the Cr-Mo steel with Nb, Ti, and B microadditions, Journal of Materials Processing Technology 157-158 (2004) 456-461.
  • [5] S.I. Kim, S.H. Choi, Y. Lee, Influence of phosphorus and boron on dynamic recrystallization and microstructures of hot-rolled interstitial free steel, Materials Science and Engineering A 406 (2005) 125-133.
  • [6] H. Takechi, Application of IF based sheet steels in Japan, Proceedings of the International Conference on the Processing, Microstructure and Properties of IF Steels, Pittsburgh, 2000, 1-12.
  • [7] D.K. Mondal, R.K. Ray, Microstructural changes and kinetics of recrystallization in a few dual-phase steels, Steel Research 60 (1989) 33-40.
  • [8] J. Adamczyk, A. Grajcar, Effect of heat treatment conditions on the structure and mechanical properties of DP-type steel. Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 305-308.
  • [9] B. Ehrhardt, T. Berger, H. Hofmann, T.W. Schaumann. Property related design of advanced cold rolled steels with induced plasticity, Steel Grips 2 (2004) 247-255.
  • [10] B. Gajda, A.K. Lis, Thermal processing of CMnAlSi steel at (α+γ) temperature range, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 355-358.
  • [11] A. Wasilkowska, P. Tispouridis, A. Werner, A. Pichler, S. Traint, Microstructure and tensile behaviour of cold-rolled TRIP-aided steels, Proceedings of the 11th Scientific International Conference „Achievements in Mechanical and Materials Engineering'2002”, Gliwice - Zakopane, 2002, 605-610.
  • [12] J. Pietrzyk, W. Osuch, G. Michta, The isothermal decomposition of the austenite obtained at a temperature between A3-A1 in a steel containing 0.2%C, 1.5%Mn and 1.5%Si, Materials Engineering 19 (1998) 18-23 (in Polish).
  • [13] Y. Tomita, K. Morioka, Effect of microstructure on transformation-induced plasticity of silicon-containing low -alloy steel, Materials Characterization 38 (1997) 243-250.
  • [14] K. Eberle, P. Cantinieaux, P. Harlet, New thermomechanical strategies for the production of high strength low alloyed multiphase steel showing a transformation induced plasticity effect, Steel Research 70 (1999) 233-238.
  • [15] A. Pichler, P. Stiaszny, TRIP steel with reduced silicon content, Steel Research 70 (1999) 459-465.
  • [16] J. Mahieu, D. Van Dooren, B. Liesbeth, B.C. De Cooman, Influence of Al, Si and P on the kinetics of intercritical annealing of TRIP-aided steels: thermodynamical prediction and experimental verification, Steel Research 73 (2002) 267-273.
  • [17] J. Adamczyk, A. Grajcar, Structure and mechanical properties of DP-type and TRIP-type sheets, Journal of Materials Processing Technology 162-163 (2005) 267-274.
  • [18] N. Apostolos, A. Vasilakos, K/Papamantellos, G. Haidemenopoulos, W. Bleck, Experimental determination of the stability of retained austenite, Steel Research 11 (1999) 466-471.
  • [19] O. Muransky, P. Hornak, P. Lukas, J. Zrnik, P. Sittner, Investigation of retained austenite stability in Mn-Si TRIP steel in tensile deformation condition, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 26-30.
  • [20] A. Basuki, E. Aernoudt, Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite, Journal of Materials Processing Technology 89-90 (1999) 37-43.
  • [21] K.W. Andrews, Empirical formulae for the calculation of some transformation temperatures, Journal of the Iron and Steel Institute 7 (1965) 721-727.
  • [22] E. Girault, P.Jacques, Ph. Harlet, K. Mols, J. Van Humbeeck, E. Aernoudt, F. Delannay, Metallographic methods for revealing the multiphase structure, Materials Characterization 40 (1998) 111-118.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS3-0017-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.