PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of damage initiation mechanism in rubber sheet composites under the static loading

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Modelling - Finite Element Analysis (FEA) of the damage initiation mechanisms in thin rubber sheet composites were carried out under static solicitation at room temperature. Natural rubber wulcanised and reinforced by carbon, NR is used in this study. Design/methodology/approach: Experimental results were compared with that of the Finite Element Analysis (FEA). Damage mechanism has been described with a threshold criterion to identify the tearing resistance, characteristic energy for tearing (T) and damage in the specimens was evaluated just at the beginning of the tearing by assuming large strain. Typical specimen geometry of thin sheet rubber composite materials was considered under static tensile tests conducted on the smooth and notched specimens with variable depths. Findings: This stage of this research, a finite element analysis (FEA) has been applied under the same conditions of this part in order to obtain the agreement between experimental and FEA results. The numerical modelling is a representation of a previous experimental study. The specimen is stretched more than once its initial size, so that large strains occur. A hyper elastic Mooney-Rivlin law and a Griffith criterion are chosen. Practical implications: A tearing criterion was suggested in the case of simple tension conditions by assuming large strain. In the next step of this study, a finite element analysis (FEA) will be applied under the same conditions of this part in order to obtain the agreement between experimental and FEA results. Originality/value: This study proposes a threshold criterion for the damage just at the beginning of the tearing for thin sheet rubber composites and gives a detail discussion for explaining the damage mechanisms. Comparison of FEA results with those of experimental studies gives many facilities for the sake of simplicity in industrial application.
Rocznik
Strony
55--58
Opis fizyczny
Bibliogr. 12 poz., fot., rys., tab.
Twórcy
autor
autor
  • Supmeca/LISMMA-Paris, School of Mechanical and Manufacturing Engineering, EA 2336, St-Ouen, France, bayraktar@supmeca.fr
Bibliografia
  • [1] R.S. Rivlin, A.G. Thomas, Rupture of Rubber. Part 1: Characteristic energy for tearing, Journal of Polymers Sciences 10 (1953) 291-318.
  • [2] G.J. Lake, Fatigue and fracture of elastomers. Rubber Chemical Technology 66 (1995) 435-460.
  • [3] H.W. Greensmith, The change in Stored Energy on Making a Small Cut in a Test Piece held in Simple Extension, Journal Polymer Science 7 (1963) 993-1002.
  • [4] P.B. Lindley, Energy for crack growth in model rubber components, Journal of Strain Analysis 7 (1972) 132-140.
  • [5] A.N. Gent, M.R. Kashani, Why do cracks turn sideways? Rubber chemistry and Technology 76 (2001) 122-131.
  • [6] R. Luong, MSc, SUPMECA-Paris/LISMMA, France, 2005.
  • [7] M.A. Helleboid, O. Thao, BSc, SUPMECA-Paris/LISMMA/ France, 2006.
  • [8] R. Luong, N. Isac, E. Bayraktar, Failure mechanisms in thin rubber sheet composites under static solicitation, Journal of Achievements in Materials and Manufacturing Engineering 21/1 (2007) 43-46.
  • [9] P.V.M. Rao, S.G. Dhande, A flexible surface tooling for sheet-forming processes: conceptual studies and numerical simulation, Journal of Materials Processing and Technology 124 (2002) 133-143.
  • [10] H. Ghaemi, K. Behdinan, A. Spence, On the development of compressible pseudo-strain energy density function for elastomers: Part 2. Application to FEM, Journal of Materials Processing and Technology 178 (2006) 317-327.
  • [11] H. Ghaemi, K. Behdinan, A. Spence, on the development of compressible pseudo-strain energy density function for elastomers: Part 1. Theory and experiment, Journal of Materials Processing and Technology 178 (2006) 307-316.
  • [12] E. Bayraktar, F. Montembault, C. Bathias, Damage Mechanism of Elastomeric Matrix Composites, Proceedings of "Society for Experimental Mechanics" SEM'2005, Portland, 2005.
  • 3-0017-0039 : Determination of the energy and power parameters during groove-rolling
  • [1] A.P. Chekmariev, A.A. Niefiedov, B.A. Nikolajev, Teorija prodolnoj prokatki, Kharkov, 1965 (in Russian).
  • [2] M. Brovman, Primienienije teorii plastichnosti v prokatkie, Moskva, 1991 (in Russian).
  • [3] B.N. Zhuchyn, G.C. Nikitin, J.C. Shvarcbart, I.G. Zujev. Rasciet usilij pri nepreryvnoj goriaciej prokatkie, Moskva. 1986 (in Russian).
  • [4] M. Głowacki, S. Mróz, L. Lesik, Analisis of base emphirical equation for the calculation of energetic-forces parameters of the rolling process, Hutnik - Wiadomości Hutnicze, 11 (1999) 523-529 (in Polish).
  • [5] L.J. Kac, N.V. Abakumova, Effektivnost povyshenija tochnosti prokatki, Moskva, 1968 (in Russian).
  • [6] V.V. Zajcev, Metallurgicheskaja i Gornorudnaja Promyshlennost 1(1979) 15-18 (in Russian).
  • [7] J.M. Jukhnovskij, Sortoprokatnoje proizvodstvo, Kharkov (1980) 24-30 (in Russian).
  • [8] A.N. Chernyshev, Metallurgicheskaja i Gornorudnaja Promyshlennost 2 (1983) 17-18 (in Russian).
  • [9] S. Mróz, A. Milenin, Numerical modeling of the metal flow and stock bending during the rolling of unequal angle bar, Journal of Materials Processing Technology 177 (2006) 561-565.
  • [10] A. Stefanik, S. Mróz, H. Dyja, Investigation of metal flow direction during double-core rod rolling in slitting oval pass, Proceedings of the 13th Scientific International Conference „Achievements in Mechanical and Materials Engineering” AMME'2003, Gliwice - Zakopane, 2003, 839-842.
  • [11] L.A. Dobrzański, A. Śliwa, W. Kwaśny, W. Sitek, The computer simulation of stresses in the Ti+TiC coatings obtained in the PVD process, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 241-244.
  • [12] I.S.Kim, J.S. Son, H.J.Kim, B.A. Chin, A study on variation of shielding gas in GTA welding using finite element method, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 249-252.
  • [13] I.H. Son, Y.G. Jin, Y.T. Im, Finite element investigations of friction condition in equal channel angular extrusion. Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 285-288.
  • [14] T. Da Sisva Botelho, E. Bayraktar, G. Inglebert, Comparison of experimental and simulation results of 2D-draw-bend springback, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 275-278.
  • [15] P. Šimecek, D. Hajduk, Prediction of mechanical properties of hot rolled steel products, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 395-398.
  • [16] FORGE3® Reference Guide Release 6.2, Sophia-Antipolis, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS3-0017-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.