PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural and quantitative analysis of die cast AE44 magnesium alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main objective of this study was development of determination of phase fraction methodology in cast magnesium alloy containing aluminum and rare earth elements. Design/methodology/approach: The study was conducted on magnesium alloy containing 4 % wt. aluminum and 4 % wt. mixture of rare earth elements (mischmetal) in the as-cast condition. The mischmetal includes cerium, lanthanum, neodymium and praseodymium. In this study, several methods were used such as: optical light microscopy, quantitative metallography, scanning electron microscopy and X-ray diffraction. The Rietveld method with Hill and Howard procedure was applied for determination of lattice parameters and phase abundance. Findings: The microstructure of investigated alloy consists of alpha-Mg solid solution, globular, lamellar and acicular precipitations of Al11RE3 and Al2RE phases. The results show that the accurate determination of phase contents in AE44 alloy can not perform using quantitative metallography. In this purpose X-ray investigations should be applied. Research limitations/implications: Developed methodology will be used to quantitative phase analysis of investigated alloy after creep tests and die cast with different parameters. Practical implications: AE44 magnesium alloy is used in automotive industry. Moreover, this alloy has a new potential application and results of investigations may be useful for preparing optimal technology of die casting. Originality/value: Procedure described in this paper may be useful as the best experimental techniques for quantitative phase analysis of the intermetallic phases occuring in the AE series magnesium alloys.
Rocznik
Strony
43--46
Opis fizyczny
Bibliogr. 19 poz., fot., rys., tab.
Twórcy
autor
autor
autor
  • Department of Material Science, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland, tomasz.rzychon@polsl.pl
Bibliografia
  • [1] B.L. Mordike, Development of highly creep resistant magnesium alloys, Journal of Material Processing Technology 117 (2001) 391-394.
  • [2] T. Rzychoń, A. Kiełbus, Microstructure of WE-43 casting magnesium alloy, Journal of Achievements in Materials and Manufacturing Engineering 21 (2007) 31-35.
  • [3] LA. Dobrzański, T. Tański, L. Cizek, Influence of Al. addition on structure of magnesium casting alloys, Journal of Achievements in Materials and Manufacturing Engineering 19 (2006) 49-55.
  • [4] LA. Dobrzański, T. Tański, L. Cizek, Heat treatment impact on the structure of die-cast magnesium alloys, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 431-434.
  • [5] N.A. El-Mahallawy, M.A. Taha, E. Pokora, F. Klein, On the influence of process variables on the thermal conditions and properties of high pressure die-cast magnesium alloys, Journal of Material Processing Technology 73 (1998) 125-138.
  • [6] K. Davey, S. Bounds, Modelling the Pressure Die Casting Process using Boundary and Finite Elements Methods, Journal of Material Processing Technology 63 (1997) 696-700.
  • [7] Y. Xue, M.F. Horstemeyer, D.L. McDowell, H. El Kadiri, J. Fan, Microstructure-based multistage fatigue modeling of a cast AE44 magnesium alloy, International Journal of Fatigue 29 (2007) 666-676.
  • [8] L.A. Anyanwu, Y. Gokan, A. Suzuki, S. Kamado, Y. Kojima, S. Takeda, T. Ishida, Effect of substituting cerium-rich mischmetal with lanthanum on high temperature properties of die-cast Mg-Zn-Al-Ca-RE alloys, Materials Science and Engineering A 380 (2004) 93-99.
  • [9] L.Y. Wei, G.L. Dunlop, H. Westengen, Development of microstructure in cast Mg-Al-rare earth alloys, Materials Science and Technology 12; 9 (1996) 741-750.
  • [10] B.R. Powell, V. Rezhets, M.P. Balogh, RA. Waldo, Microstructure and creep behavior in AE42 magnesium die-casting alloy, JOM August (2002) 34-38.
  • [11] P. Bakke, H. Westengen, The role of rare earth elements in structure and property control of magnesium die casting alloys, TMS Magnesium Technology (2005) 291-296.
  • [12] T.Rzychoń, A. Kiełbus: Effect of rare earth elements on the microstructure of Mg-Al alloys, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 135-138.
  • [13] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal Applied Crystallography 2 (1975) 65-71.
  • [14] R.L. Snyder, J. Fiala, H.J. Brunge (Eds) Defect and Microstructure Analysis by Diffraction, IUCr Monographs on Crystallography 10 Oxford University Press Inc. New York 1999.
  • [15] G. Dercz, K. Prusik, L. Pająk, Structure investigations of commercial zirconia ceramic powder, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 259-263.
  • [16] R.W. Young (Ed) The Rietveld method, IUCr Monograph on Crystallography 5 Oxford Science Pub. 1993.
  • [17] L. Pająk, B. Formanek, G. Dercz, Dispersion analysis of NiAl-TiC-Al203 composite powder, Proceedings of 12th Scientific International Conference "Achievements in Mechanical and Materials Engineering" AMME'2003, Gliwice-Zakopane, 2003, 723-726.
  • [18] R.A. Young, A. Sakhivel, T.S. Moss, CO. Parva-Santos, DBWS-9411 - an upgrade of the DBWS programs for Rietveld Refinement with PC and mainframe computers, Journal Applied Crystallography 28 (1995) 366-367.
  • [19] R.J. Hill, C.J. Howard, Quantitative phase-analysis from neutron powder diffraction data using the Rietveld method, Journal Applied Crystallography 28 (1987) 467.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS3-0017-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.