PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of induction heating process with radiative heat exchange

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Numerical modelling of induction heating process is a complex issue. It needs analysis of coupled electromagnetic and thermal fields. Calculation models for electromagnetic field analysis as well as thermal field analysis need simplifications. In case of thermal field calculations, correct modelling of radiative heat exchange between the heated charge and inductor's thermal insulation is essential. Most commercial calculation programs enabling coupled analysis of electromagnetic and themal fields do not allow taking into consideration radiative heat exchange between calculation model components, which limits thermal calculations only to the charge area. The paper presents a supplementation of the program Flux 2D with radiative heat exchange procedures. Design/methodology/approach: Commercial program Flux 2D designed for coupled electromagnetic and thermal calculation (based on finite element method) was supplemented with authors program for radiative heat exchange based on numerical integration of classic equations. Findings: Supplementation EM-T calculations with radiative heat exchange between charge and inductor enables to calculate thermal insulation parameters and increase precision of modelling. Research limitations/implications: Procedures for radiative heat exchange enables calculation of two surfaces (flat or cylindrical) with finite dimensions. The surfaces can be displaced relative to each other (charge shorter or longer than thermal insulation of inductor). Material of surfaces is modelled as: flat, diffuse, radiant surfaces absorb energy evenly in the whole spectrum (grey bodies). The whole system is modelled as in a steady thermal state (quasi-steady). Originality/value: Authors program extends Flux 2D features with a possibility for calculating radiative heat transfer. The application of radiative process is possible between all components of the studied model, not only for the boundary conditions.
Rocznik
Strony
53--56
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
  • Department of Electrotechnology, Faculty of Metallurgy and Material Science, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland, roman.przylucki@polsl.pl
Bibliografia
  • [1] Cedrat, Flux 2D User's Guide, 2006.
  • [2] H. Kawaguchi, M. Enokizono, T. Todaka, Thermal and magnetic field analysis of induction heating problems, Journal of Materials Processing Technology 161 (2005) 193-198.
  • [3] H.K. Jung, The induction heating process of semi-solid aluminium alloys for thixoforming and their microstructure evaluation, Journal of Materials Processing Technology 105 (2000) 176-190.
  • [4] D.C. Ko, G.S. Min, B.M. Kim, J.C. Choi, Finite element analysis for the semi-solid state forming of aluminium alloy considering induction heating, Journal of Materials Processing Technology 100 (2000) 95-104.
  • [5] Z. Hu, J.Q. Li, Computer simulation of pipe-bending processes with small bending radius using local induction heating, Journal of Materials Processing Technology 91 (1999) 75-79.
  • [6] K.L. Schlemmer, F.H. Osman, Differential heating forming of solid and bi-metallic hollow parts, Journal of Materials Processing Technology 162-163, 2005, 564-569.
  • [7] R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, Mc-Graw Hill Book Co., N. York, 1972.
  • [8] M.F. Cohen, D.P. Greenberg, The hemi-cube: a radiosity solution for complex environment, Computer Graphics, 1985.
  • [9] J. Kajiya, The Rendering Equations, Computer Graphics 20, 1986.
  • [10] P. Dutré, Global Illumination Compendium, Cornell University, 2001.
  • [11] M.F. Modest, Radiative Heat Transfer. Second Edition, Academic Press Amsterdam, Boston - London - N. York - Sydney, 2003.
  • [12] A. Kachel, R. Przyłucki, Two dimensional model of radiative heat exchange in heater - flat charge system, Proceedings of the International Conference on Research in Electrotechnology and Applied Informatics, Katowice, 2005, 153-158.
  • [13] K. Domke, Modelling of radiative heat transfer using computer graphics programs, Proceedings of the International Conference on Research in Electrotechnology and Applied Informatics Katowice, 2005, 79-84.
  • [14] P. Furmanski, J. Banaszek, Some new computational models of radiative heat transfer in participating media, Progress in Computational Fluid Dynamics 5 (2005) 222-229.
  • [15] W.M. Gao, L.X. Kong, P.D. Hodgson, Numerical simulation of heat and mass transfer in fluidised bed heat treatment furnaces, Journal of Materials Processing Technology 125-126 (2002) 170-178.
  • [16] H.P. Zeng, J.C. Fang. W J. Xu. Z.Y. Zhao, L. Wang, Thermo-mechanical modeling of a single splat solidification in plasma spraying, Journal of Achievements in Materials and Manufacturing Engineering 18 (2007) 327-330.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS3-0017-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.