PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat treatment and mechanical properties of low-carbon steel with dual-phase microstructure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to design heat treatment conditions of dual-phase steel and to determine their influence on the structure and mechanical properties of steel. Design/methodology/approach: The heat treatment of the C-Mn steel in order to obtain a dual-phase ferritic-martensitic structure of desirable phase fractions was realized. To investigate the influence of heat treatment parameters on the structure light and transmission electron microscopy methods were used. Mechanical properties were determined by means of tensile test. A strain hardening exponent as a function of true strain was evaluated, too. Findings: It was found that an initial structure influences essentially the morphology of martensite in an obtained dual-phase structure. It can occur as a network, fine fibres or islands in a ferritic matrix of high dislocation density in the vicinity of diffusionless transformation products of austenite. The best combination of strength and ductile properties has a steel with the martensite in a form of fine fibres. Research limitations/implications: Investigations concerning using the thermomechanical treatment to obtain a ferritic-martensitic structure of steel are required. Practical implications: The established heat treatment conditions can be useful for manufacturing dual-phase structure sheets characterized by high strength and ductile properties as well as a good suitability for metal forming operations. Originality/value: The relationship between the initial structure and martensite morphology in dual-phase steels was specified.
Rocznik
Strony
13--20
Opis fizyczny
Bibliogr. 29 poz., fot., rys., tab.
Twórcy
autor
autor
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18 a, 44-100 Gliwice, Poland, adam.grajcar@posl.pl
Bibliografia
  • [1] Т. Gladman, The Physical Metallurgy of Microalloyed Steels, University Press Cambridge, Cambridge, 1997.
  • [2] J. Adamczyk, Engineering of Metallic Materials, The Silesian University of Technology Publishers, Gliwice, 2004, (in Polish).
  • [3] A.J. DeArdo, Modern thermomechanical processing of microalloyed steel: A physical metallurgy perspective, Proceedings of the International Conference "Microalloying'95", Pittsburgh, 1995, 15-33.
  • [4] W. Bleck, Cold-rolled, high-strength sheet steels for auto applications, JOM 48 (1996) 26-30.
  • [5] R. Alderdice, E.A. Campbell, Process plant implications of ULSAB and high strength autobody steels, Ironmaking and Steelmaking 25 (1998) 435-442.
  • [6] W. Bleck, Z. Deng, K. Papamantellos, A comparative study of the forming-limit diagram models for sheet steels, Journal of Materials Processing Technology 83 (1998) 223-230.
  • [7] H. Takechi, Application of IF based sheet steels in Japan, Proceedings of the International Conference on the Processing, Microstructure and Properties of IF Steels, Pittsburgh, 2000, 1-12.
  • [8] D.K. Mondal, R.K. Ray, Microstructural changes and kinetics of recrystallization in a few dual-phase steels, Steel Research 60 (1989) 33-40.
  • [9] A.K.Lis, B. Gajda, Modelling of the DP and TRIP microstructure in the CMnAlSi automotive steel, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 127-134.
  • [10] J. Adamczyk, A. Grajcar, Structure and mechanical properties of DP-type and TRIP-type sheets, Journal of Materials Processing Technology 162-163 (2005) 23-27.
  • [11] B. Ehrhardt, T.Berger, H. Hofmann, T.W. Schaumann, Property related design of advanced cold rolled steels with induced plasticity, Steel Grips 2 (2004) 247-255.
  • [12] J. Zrnik, P. Lukas, Z. Novy, P. Jencus, In situ investigation of transformation kinetics in Si-Mn TRIP steel, Proceedings of the 12th Scientific International Conference „Achievements in Mechanical and Materials Engineering" AMME'2003, Gliwice-Zakopane, 2003, 1083-1086.
  • [13] B. Gajda, A.K. Lis, Intercritical annealing with isothermal holding of TRIP CMnAlSi steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 439-442.
  • [14] S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants. Cold rolling behaviour of an austenitic Fe-30Mn-3Al-3Si TWIP-steel, Acta Materialia 52 (2004) 2005-2012.
  • [15] S. Allain, J.P. Chateau, O. Bouaziz, Constitutive model of the TWIP effect in a polycrystalline high manganese content austenitic steel, Steel Research 73 (2002) 299-302.
  • [16] http://www.ulsab-avc.org, Advanced high strength steel application guidelines.
  • [17] J. Lis, A.K. Lis, С Kolan. Processing and properties of C-Mn steel with dual-phase microstructure, Proceedings of the 13th Scientific International Conference „Achievements in Mechanical and Materials Engineering" AMME'2005, Gliwice-Wisła, 2005, 395-398.
  • [18] S. Zhengming, W. Zhongguang, A. Suhua, Effects of morphology on the tensile and fatigue behaviour of a dual-phase steel, Steel Research 60 (1989) 215-220.
  • [19] I.S. Kim, U. Reichel, W. Dahl, Effect of bainite on the mechanical properties of dual-phase steels, Steel Research 58 (1987) 186-190.
  • [20] J. Kupczyk, A.K. Lis, B. Koczurkiewicz, Quantitative structural analysis of C-Mn-B steel cooled with different cooling rates, Proceedings of the 13th Scientific International Conference „Achievements in Mechanical and Materials Engineering" AMME'2005, Gliwice-Wisła, 2005, 382-386.
  • [21] J. Adamczyk, A. Grajcar, Effect of heat treatment conditions on the structure and mechanical properties of DP-type steel, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 305-308.
  • [22] J. Adamczyk, Development of the microalloyed constructional steels, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 9-20.
  • [23] J Zrnik. T. Kvackaj, P. Hornak, V. Vrchovinsky, Thermomechanical treatment of HSLA steel QStE480MC, Proceedings of the 11th Scientific International Conference „Achievements in Mechanical and Materials Engineering" AMME’2002, Gliwice-Zakopane, 2002, 641-644.
  • [24] J. Adamczyk, Manufacturing of mass-scale products from structural microalloyed steels in integrated production lines, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 399-402.
  • [25] А K. Lis, W. Gliński, J. Lis, Modelling of microstructure development for thermomechanical rolling in (α+β) temperature range. Proceedings of the 12th Scientific International Conference “Achievements in Mechanical and Materials Engineering” AMME'2003, Gliwice-Zakopane, 2003, 609-612.
  • [26] A.K. Panda, R. I Ganguly, D.S. Sarma, R.Ch. Gupta, S. Misra, Effect of thermomechanical treatment on structure and mechanical properties of Mo-bearing dual phase steel, Steel Research 66 (1995) 309-317.
  • [27] J. Adamczyk, A. Grajcar, Thermomechanical treatment of microalloyed structural sheets with a ferritic – martensitic structure, Proceedings of the 11th Scientific International Conference “Achievements in Mechanical and Materials Engineering” AMME’2002, Gliwice-Zakopane, 2002, 1-6 (in Polish).
  • [28] K.W. Andrews, Hardenability of steels, Journal of the Iron and Steel Institute 7 (1965) 721-727.
  • [29] S Godet, P. Harlet, F. Delannay, P.J. Jacques, Effect of hot-rolling conditions on the tensile properties of multiphase steels exhibiting a TRIP effect, Steel Research 73 (2002) 280-286.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS3-0017-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.