PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of heat treatment on properties and corrosion resistance of Al-composite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of the project was evaluation of the effect of heat treatment and of the reinforcing Al2O3 particles in the EN AW-AlCu4Mg1(A) aluminium alloy on the mechanical properties, abrasive and corrosion resistance in the NaCl water solution environment. Design/methodology/approach: some of the composite materials were hyperquenched for 0.5 h at the temperature of 495 degrees centigrade with the subsequent cooling in water, and were quench aged next for 6 h at 200 degrees centigrade. Hardness tests were made on HAUSER hardness tester with the Vickers method at 10 N. Static compression and tensile tests of the fabricated composite materials were made on the ZWICK 100 type testing machine at room temperature. Abrasion resistance wear tests were carried out with the constant number of cycles of 5000 (120 m) at various loads: 4, 5, 6, 7, and 8 N. Test pieces were rinsed in the ultrasonic washer to clean them and next weighed on the analytical balance with the accuracy of 0.0001 g to check the mass loss. Corrosion tests were made in 5% water NaCl solution. Findings: Besides visible improvement of mechanical properties: hardness, compression strength and tensile strength, wear resistance there were also observed the influence of heat treatment on the corrosion resistance of composite materials in 3% NaCl solution. Practical implications: Tested composite materials can be applicate among the others in automotive industry but it requires additional researches. Originality/value: It was demonstrated that the mechanical properties, as well as the wear and corrosion resistance of the sintered composite materials with the EN AW-Al Cu4Mg1(A) alloy matrix may be formed by the dispersion hardening with the Al2O3 particles in various portions and by the precipitation hardening of the matrix.
Rocznik
Strony
55--58
Opis fizyczny
Bibliogr. 15 poz., fot., rys., tab.
Twórcy
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18 a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
Bibliografia
  • [1] L.A. Dobrzański, A. Włodarczyk-Fligier, M. Adamiak, Properties and corrosion resistance of PM composite materials based on EN AW-Al Cu4Mgl(A) aluminum alloy reinforced with the Ti(C,N) particles, Manufacturing and Materials Science CAM3S’2005, Gliwice-Zakopane, 2005, 289-295.
  • [2] L.A. Dobrzański, A.Włodarczyk, M.Adamiak, The structure and properties of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the BN or Аl203 ceramic particles, Journal of Materials Processing Technology, Vols. 162-163, 2005, 27-32.
  • [3] B.Torres, H. Lieblich, J. Ibanez, A.Garcia, Escorial: Mechanical properties of some PM aluminide and silicide reinforced 2124 aluminium matrix composites, Scripta Materialia 47 (2002) 45.
  • [4] A. Jimenez-Morales, E.M. Ruiz-Navas, J.B. Fogagnolo, J.M. Torralba, Corrosion resistance of 6061 aluminium base composite materials, Advances in Materials and Processing Technologies (2003) 1267-1270.
  • [5] M.Adamiak, J.B. Fogagnolo, E.M. Ruiz-Navas, L.A. Dobrzański, J.M. Torralba, Mechanically milled MMC reinforced with intermetallics- the structure and properties, Proceedings of the International AMPT Conference, Dublin, Ireland, 2003, 1448.
  • [6] J.W. Yeh Yuan S-Y, Ch-H. Peng, A reciprocating extrusion process for producing hypereutectic Al - 20 wt. % Si wrought alloys, Materials Science and Engineering A252 (1998), 212.
  • [7] PN-EN 573-3, Aluminium and aluminium alloys-Chemical compositions and plastic formed product types, 1998.
  • [8] L.A. Dobrzański, A. Włodarczyk-Fligier, M. Adamiak, Structure and properties of PM composite materials based on EN AW - AlCu4Mg1(A) aluminium alloy reinforced with the Ti(C,N) particles, International Conference on Processing & Manufacturing of Advanced Materials, Processing, Fabrication, Properties, Applications 2006 Vancouver, Canada (in print).
  • [9] L.A. Dobrzański, A. Włodarczyk, M. Adamiak, Corrosion resistance of the sintered composite materials with the EN AW-AlCu4Mg1(A) alloy matrix reinforced with A1203 and Ti(C,N), Mechanical and Manufacturing Engineering,.Gliwice, 2005, 89-92.
  • [10] L.A. Dobrzański, A. Włodarczyk, M. Adamiak: Composite materiale based on EN AW-AlCu4Mg1 aluminium alloy reinforced with the Ti(C,N) ceramic particles, Materials Science Forum v. 530-531, 2006, 243-248.
  • [11] H.S. Chu, K.S. Liu, J.W. Yeh, Aging behavior and tensile properties of 6061Al-0.3μm Al203p particle composites produced by reciprocating extrusion, Scripta Materialia 45 (2001), 541-546.
  • [12] J.M.Torralba, C.E.Costa, F.Velasco, P/M aluminium matrix composites: an overview, Journal of Materials Processing Technology 133 (2003), 203-206.
  • [13] S.I. Hong, Y.S. Seo, Effect of microstructure on wear behavior of Al-Mg-Si alloy matrix-10 vol.% Al203 composite, Materials Science and Engineering A265 (1999), 29-41.
  • [14] Y.T.Kim, K. Ikeda, T.Murakami, Metal flow In porthole die extrusion of aluminium, Journal of Materials Processing Technology 121 (2002) 107-115.
  • [15] P.B. Silna-Maia, F.Velasco, N.Anton, C.E.Costa, W.C. Zapata, Corrosion resistance of 2014 aluminium matrix composites reinforced with atomised Ni3Al, Advanced Performance Materials 6 (1999) 117-12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS3-0016-0066
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.