PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wybrane materiały na osnowie miedzi o szczególnych własnościach

Identyfikatory
Warianty tytułu
EN
Selected copper based materials with special properties
Języki publikacji
PL
Abstrakty
PL
Omówiono zagadnienia związane z własnościami i zastosowaniem stopów miedzi o szczególnych własnościach, otrzymywanych klasycznymi metodami. Dokonano również przeglądu badań nad materiałami o nanokrystalicznej strukturze na osnowie miedzi. Wskazano kierunki dalszych prac.
EN
The characteristics and application areas of copper alloys with special properties obtained by classical methods have been presented. Review of the research on copper based materials with nanocrystalline structure has been made indicating the directions of further research in this field.
Rocznik
Strony
220--225
Opis fizyczny
Bibliogr. 50 poz., tab.
Twórcy
autor
  • Instytut Metali Nieżelaznych, Gliwice
autor
  • Instytut Metali Nieżelaznych, Gliwice
autor
  • Instytut Metali Nieżelaznych, Gliwice
autor
  • Instytut Metali Nieżelaznych, Gliwice
Bibliografia
  • 1. Korbel A., Bochniak W., Pawełek A.: Optymalizacja własności wytrzymałościowych i elektrycznych miedzi stopowych. Archiwum Hutnictwa 1981, t. 26, s. 253+275.
  • 2. Miyake l, Fine M. E.: Conductivity vs strength in a hardened alloy. Acta Metali. Mater. 1992, t. 40, s. 733+753.
  • 3. Stobrawa J., Ciura L., RdzawskiZ.: Rapidly Solidified Strips of Cu-Cr Alloys. Scripta Materialia 1996, t. 34, s. 1759+1763.
  • 4. Langer ].; Copper Alloys for Connectors, Springs and Lead Frames. Diehl Metali., 2000.
  • 5. Badania wpływu dodatków Cr, Ni, Ti, Sn, Zn w stopach miedzi na procesy wydzielania, podatność do przeróbki plastycznej i właściwości użytkowe dla opracowania materiału o korzystnym połączeniu własności mechanicznych i przewodności elektrycznej. Projekt badawczy nr 7 S 202 006 06, Sprawozdanie IMN 5370/96 (niepublik.).
  • 6. Schuster H., Herzog R., Czyrska-Filemonowicz A.: Iron-base Oxide Dispersion Strengthened Alloys: Tensile and Creep Behaviour and its Modelling. Metallurgy and Foundry Engineering, 1995, t. 21, nr 4, s. 273+285.
  • 7. Czyrska-Filemonowicz A., Dubiel B.: Mechanically alloyed, ferritic oxide disperssion strengthened alloys: structure and properties. Journal of Materials Processing Technology, 1997, nr 64, s. 53+64.
  • 8. Rdzawski Z.: High-temperature structural stability of new platinum alloys used in the glass industry. Proceedings AMT 2001, Inżynieria Materiałowa, 2001, nr 5, s. 765+767.
  • 9. Stobrawa J.: Structure and ageing characteristics of the newCu-Ni-Al based alloys. Proceedings AMT 2001, Inżynieria Materiałowa, 2001, nr 5, s. 877+880.
  • 10. Jung-Ho Ahn, In-Hyuk Song, Yoo-Dong Hahn: Cu-Based Cermets Prepared By Mechanical Alloying. Materials Transactions, JIM, 1996, t. 37, nr 4, s. 733+737.
  • 11. Rajkovic V. M., Mitkov M. V.: Dispersion hardened Cu-AhGi produced by high energy milling. International Journal of Powder Metallurgy, t. 36, nr 80, s. 45+49.
  • 12. Rajkovic V., Zec S., Mitkov M.: Copper matrix strengthening in Cu-AbOj system by mechanical alloying and milling of pure copper and prealloyed copper powders. Advanced Science and Technology of Sintering, 1999, s. 537+543, Proceedings of 9-th World Round Table on Sintering, Belgrade Yugoslavia, Septerftber 1998.
  • 13. Ying D. Y., Zhang D. L.: Propcessing of CU-AI2O3 metal matrix nanocomposite materials by using high energy bali milling. Materials Science and Engineering, A, 2000, t. 286, nr 1, s. 152+156.
  • 14. Palma R., Sepulveda H.A.O.: Contamination effects on precipitation hardening of Cu-Alumina alloys, prepared by mechanical alloying. Proceedings „Third International Latin American Conference on Powder Technology", Brazil, November 2001.
  • 15. NaserJ., Riehemann W., Ferkel H.: Dispersion hardening of metals by nanoscaled ceramic powders, Materials Science Engineering A234,1997, s. 467+469.
  • 16. Onischuk A. A., Karasev V. V., Glotov O. G., Baklanm A. M., Chernishev A. V., Panfikn V. N., Zarko V. E.: Aluminium oxide fullerensas precursors of AI2O3 Nanoparticles. Institute of Chemical Kinetics and Cora-bustion, Russian Academy of Science, Novosibirsk, Russia. E-mail: oni-schuk@ns.kinetics.nsc.ru
  • 17. Orolinova M., Durisin J., Durisinova K., Katana V., Besterici M.: Microstructural characteristics of ultrafine dispersion strengthened Cu-CuO center dot AI2O3 materiał, Kovove Materialy-Metallic Materials, 1999, t. 37, nr 6, s. 377+385.
  • 18. Buchgraber W., Islamgaliev R. K., Kolobov Y. R., AmirkhanovN. M.: Structure and deformation behaviour of SPD Cu-based nanocomposite, NATO Science Series, series 3: High Technology, 2000, t. 80, s. 267+272.
  • 19. Kolobov Y. R., IvanovK. V., Grabovetskaya P.: Creep of copper and Cu 0,9 % vol AI2O3 nanocomposite. NATO Science Series, series 3: High Technology, 2000, t. 80, s. 339+344.
  • 20. Cheng J., Wang M., Li Z, Wang Y.: Nano scalę AI2O3 Dispersion-strengthened Copper Alloy Produced by Internal Oxidation. China — Eu Forum on Nanosized Technology, Beijing, P. R. China. Dec. 2002, s. 93+101.
  • 21. Lagerpusch U., Mohles V., Nembach E.: On the additivity of solid solution and dispersion strengthening. Materials Science Engineering A319-321, 2001, s. 176+178.
  • 22. Lagerpusch U., Mohles V., Baither D., Anczukowski B., Membach E.: Double strengthening of copper by dissolved gold-atoms and by incoherent SiOi-particles: how do the two strengthening contributions superimpose? Acta Mater. 2000, nr 48, s. 3647+3656.
  • 23. Zuniga A., Palma R., Sepuheda A., Lobel T., Nunez L.: Microstructure and mechanical behavior of Cu-based composites reinforced with WC and TiC particles, prepared by spray forming. Proceedings of the Second International Latin American conference on Powder Technology, Nov. 1999, Iguacu, Brasil.
  • 24. Sauer C, Weissgarber T., Dehm G., Mayer J., Pusche W., Kieback B.: Dispersion strengthening of copper alloys. Zeitschrift fur Metallkunde, 1998, t. 89, nr 2, s. 119+125 G.
  • 25. Dehm J. Thomas, Mayer J., Weissgarber T., Pusche W., Sauer C: Formation and interface structure of tic particles in dispersion-strengthened Cu alloys. Philosophical Magazine, A, 1998, t. 77, nr 6, s. 1531 + 1554.
  • 26. Palma R., Sepuheda A., Spinoza R., Montiglio R.: Evaluatton of the performance of copper-alloy electrodes for electrical-resistance welding. Proceedings of the COPPER 2003-COBRE 2003 Conference, Santiago, Chile, t. 1, s. 739.
  • 27. Baikalova Y. V., Lomovsky O. I.: Solid state of synthesis of tungsten carbide in an inert copper matrix. Journal of Alloys and Compounds, 2000, t. 297, nr 1-2, s. 87+91.
  • 28. Vergara V., LopezM., Benavente R., Kamurri C, CartezB., Jimenez J.: Proceedings of the 4-th COPPER 99-COBRE 99 Conference, t. 303+310, PHOENIX, ARIZONA, October 1999.
  • 29. Juan B. R., Jorge G. C., dePaul M. Z. V.: Fabrication and hot extrusion of mechanically alloying Cu-15wt%Cr alloy. Advanced Powder Technology, 1999, t. 293, nr 3, s. 470+477.
  • 30. Lee K. L.: Effect of oxidation on the creep behavior of copper-chro-mium in situ composite. Composites Part A: Applied Science and Manufac-turing, 2003, t. 34, nr 12, s. 1135+1271.
  • 31. Subramanian R., RamakrislmanS., ShankarP.: Roleof disclination and nanocrystalline state in the formation of quasicrystalline phases on mechanical alloying of Cu-Fe powders. Journal of Materials Science and Technology, 2000, t. 16, nr 5, s. 499+503.
  • 32. Tan L K., Li Y., Ng S. C., Lu L.: Structures, properties and responses to heat treatment of Cu-Y alloys prepared by mechanical alloying. Journal of Alloys and Compounds, 1998, t. 278, nr 1-2, s. 201+208.
  • 33. Zhou C., Aizawa T., Takumitsu K., Tatsuzawa K., Kihara J.: Mechanically alloyed, metastable and nanocrystalline materials. Part 2 (Series: Materials Science Forum), 1998, t. 269, nr 2, s. 913+918.
  • 34. Yermakov A. Y., Mushinkov N. V., Uimin M. A., Zajkov N. K., Kowbielnikov A. Y., Slitolz. A. K., Serikav V. V.: Mechanically alloyed, metastable and nanocrystalline materials. Part 2 (Series: Materials Science Forum), 1998, t. 269, nr 2, s. 907+912.
  • 35. Modder I. W., Schoonderwaldt £., Zhou H. G. F., Bakker H.: Magnetic properies of machanically alloyed Co-Cu. Physica B. 1998, t. 245, ir4,s. 363+375.
  • 36. Yoo Y. G., Yang D. S., Kim W. T., Lee J. M.: Structural and magnetic properties of mechanically alloyed Co20Cu80 solid solution. Journal of Magnetism and Magnetic Materials, 1999, nr 203, s. 193-195.
  • 37. Aizawa T.. Zhou C.: Nanogranulation process into magnetoresistant Co-Cu alloy on the route of bulk mechanical alloying. Materials Science and Engineering A, 2000, t. 285, nr 1-2, s. 1+7.
  • 38. Harris V. G., Kemner K. M., Das B. N., Koon N. C., Ehrlich A. E., Kirkland J. P., Woicik J. C, Crespo P., Hemando A., Escorial A. G.: Near-Neighbor mixing and bond dilation in mechanically alloyed Cu-Fe. Physical Review B-Condensed Matter, 1996, t. 54, nr 10, s. 6929+6940.
  • 39. Schiling P. I., He J. H., Tittsworth R. C, Ma E.: Two-phase coexistence region in mechanically alloyed Cu-Fe: an x-ray absorptionear-edge structure study. Acta Materialia, 1999, t. 47, nr 8, s. 2525+2537.
  • 40. Yoo Y. G., Kim W. T., Yu S. C., Kim Y. D.: Temperaturę dependence of magnetization in nanocrystalline Cu-Fe-Co alloys. J. of Magnetism and Magnetic Materials, 1996, nr 158, s. 233+234.
  • 41. Yu S. C., Song Y. Y., Kiss L. F., Vincze I.: Study on the magnetic behavior of nanogranular Cu80Fel0Col0 solid solution. Journal of Magnetism and Magnetic Materials, 1999, nr 203, s. 316+318.
  • 42. Koch C. C.: Top-down synthesis of nanostructured materials: mechanical and thermal processing methods. Rev. Adv. Mater. Sci., 2003, nr 5, s. 91+99.
  • 41. HuangJ. Y., Wu Y. K., YeH. Q.: Deformation structures in bali milled copper. Acta Mater. 1996, t. 44, nr 3, s. 1211+1221.
  • 44. Wang Y. P., Ding B. }.: The preparation and the properties of microcrystalline and nanocrystalline Cu-Cr contact materials. IEEE Transactions on Components & Packing Technology, 1999, t. 23, nr 3, s. 467+472.
  • 45. PabiS. K., Murty B. S.: Mechanism of mechanical alloying in Ni-Al and Cu-Zn systems. Materials Science and Engineering A, 1996,t. 214, nr 1-2, s. 146+152.
  • 46. Murty B. S., Joardar J„ Datta M. K., Pabi S. K.: Phase transforma-tions induced in nanocrystalline materials during mechanical alloying. Japan Institute of Metals, Proceedings, 1999, t. 12, s. 1259+1262. International Conference on Solid-Solid Phase Transformation.
  • 47. Guerrero-Paz /., Jaramillo-Vigueras D.: Comparison of grain size distributions obtained by xrd and tern in milled fcc powders. Nanostructured Materials, 1999, t. 11, nr 8, s. 1195+1204.
  • 48. Curcic R., Jokanovic V., Zivanovic P.: Synthesis of nanocomposite copper-molybdenum powderby mechanical alloying. Serb. Chem. Soc. 1996, t. 61, nr 8, s. 681+687.
  • 49. Mughrabi H., Hoppel H. W., Kautz M., Valiev R. Z.: Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation. Z. Metallkd. 2003, nr 94, s. 1079+1083.
  • 50. Tabachnikowa E. D., Bengus V. Z., Natasik V. D., Valiev R. Z., Stolyarov V. V., Alexandrov I. V.: Low temperature plasticity of bulk nanostructured Cu, Ni and Ti processed by severe plastic deformation. Proceedings of the 22nd Riso International Symposium on Materials Science: Science of Metasatable and Nanocrysalline Alloys, Structure, Properties andModeling, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS3-0010-0086
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.