PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion behaviour of plastically deformed high-Mn austenitic steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the work was the comparison of corrosion resistance in an aqueous sulfuric acid solution of two high-manganese austenitic steels of the 0.05C-25Mn-Al-Si-Nb-Ti type in a plastically deformed state. Design/methodology/approach: Investigations were carried out on specimens obtained from a thermo-mechanically rolled sheet and then plastically deformed through bending and immersed in corrosive solutions (1N H2SO4) for 100 hours. The mass decrement was calculated by the gravimetric method, whereas the character of corrosion damages was observed in metallographic investigations using light and scanning electron microscopes both in the polished and etched states. Findings: It was found that after the thermo-mechanical processing one steel is characterized by an austenitic structure with numerous annealing twins, whereas in the second steel lamellar martensitic phases in an austenitic matrix occur. The investigations showed that the examined high-manganese steels have very low corrosion resistance in normal H2SO4. Higher impact on the corrosion resistance than the phase composition has the chemical composition. The mass decrement of the steel with martensite plates is a bit higher than that with a single-phase austenitic matrix. The specimens were intensively dissolved due to general corrosion accompanying by pitting and hydrogen cracking. Research limitations/implications: To investigate in more detail the corrosion behaviour of high-manganese austenitic steels, the polarization tests and the analysis of corrosion products should be carried out. Practical implications: The obtained results can be used for searching the appropriate way of improving the corrosion resistance of high-strength high-manganese austenitic steels. Originality/value: The corrosion resistance of two types of advanced high-manganese austenitic steels with different initial structures was compared. Hydrogen impact in austenitic steels was discussed. Keywords: Corrosion resistance; high-manganese steels; gravimetric method; pitting corrosion; general corrosion; hydrogen cracking
Rocznik
Strony
228--235
Opis fizyczny
Bibliogr. 26 poz., rys., tabl.
Twórcy
autor
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, ul. Konarskiego 18A, 44-100 Gliwice, Poland, adam.grajcar@polsl.pl
Bibliografia
  • [1] G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, ISIJ International 43 (2003) 438-446.
  • [2] B. Wietbrock, M. Bambach, S. Seuren, G. Hirt, Homogenization strategy and material characterization of high-manganese TRIP and TWIP steels, Materials Science Forum 638-642 (2010) 3134-3139.
  • [3] S. Allain, J-P. Chateau, D. Dahmoun, O. Bouaziz, Modeling of mechanical twinning in a high manganese content austenitic steel, Materials Science and Engineering A 387-389 (2004) 272-277.
  • [4] O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development – properties - application, International Journal of Plasticity 16 (2000) 1391-1409.
  • [5] L.A. Dobrzański, A. Grajcar, W. Borek, Influence of hot-working conditions on a structure of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 29 (2008) 139-142.
  • [6] A. Grajcar, M. Opiela, G. Fojt-Dymara, The influence of hot-working conditions on a structure of high-manganese steel, Archives of Civil and Mechanical Engineering 9/3 (2009) 49-58.
  • [7] L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution and phase composition of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 31 (2008) 218-225.
  • [8] Y.G. Kim, Y.S. Park, J.K. Han, Low temperature mechanical behavior of microalloyed and controlled-rolled Fe-Mn-Al-C-X alloys, Metallurgical and Materials Transactions 16A (1985) 1689-1693.
  • [9] C.J. Altstetter, A.P. Bentley, J.W. Fourine, A.N. Kirkbridge, Processing and properties of Fe-Mn-Al alloys, Materials Science and Engineering A82 (1986) 13-25.
  • [10] Y.S. Zhang, X.M. Zhu, Electrochemical polarization and passive film analysis of austenitic Fe-Mn-Al steels in aqueous solutions, Corrosion Science 41 (1999) 1817-1833.
  • [11] M. Opiela, A. Grajcar, W. Krukiewicz, Corrosion behaviour of Fe-Mn-Si-Al austenitic steel in chloride solution, Journal of Achievements in Materials and Manufacturing Engineering 33/2 (2009) 159-165.
  • [12] M.B. Kannan, R.K.S. Raman, S. Khoddam, Comparative studies on the corrosion properties of a Fe-Mn-Al-Si steel and an interstitial-free steel, Corrosion Science 50 (2008) 2879-2884.
  • [13] A.S. Hamada, Manufacturing, mechanical properties and corrosion behavioiur of high-Mn TWIP steels, Acta Universitatis Ouluensis C281 (2007) 1-51.
  • [14] I.M. Ghayad, A.S. Hamada, N.N. Girgis, W.A. Ghanem, Effect of cold working on the aging and corrosion behaviour of Fe-Mn-Al stainless steel, Steel Grips 4 (2006) 133-137.
  • [15] A. Grajcar, S. Kołodziej, W. Krukiewicz, Corrosion resistance of high-manganese austenitic steels, Archives of Materials Science and Engineering 41/2 (2010) 77-84.
  • [16] L. Bracke, G. Mertens, J. Penning, B.C. De Cooman, M. Liebeherr, N. Akdut, Influence of phase transformations on the mechanical properties of high-strength austenitic Fe-Mn-Cr steel, Metallurgical and Materials Transactions 37A (2006) 307-317.
  • [17] J. Flis, Hydrogen and corrosion degradation of metals, National Science Publishers, Warsaw, 1979 (in Polish).
  • [18] M. Opiela, Hydrogen embrittlement of welded joints for the heat-treatable XABO 960 steel heavy plates, Journal of Achievements in Materials and Manufacturing Engineering 38/1 (2010) 41-48.
  • [19] J. Ćwiek, Hydrogen degradation of high-strength steels, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 193-212.
  • [20] S. Prowans, Physical metallurgy, National Science Publishers, Warsaw, 1988 (in Polish).
  • [21] G. Wranglen, An introduction to corrosion and protection of metals, Royal Institute of Technology, Stockholm, 1972.
  • [22] R.A. Cottis, Stress corrosion cracking, Corrosion and Protection Centre, UMIST, Teddington, 1982.
  • [23] P. Kumar, R. Balasubramaniam, Determination of hydrogen diffusivity in austenitic stainless steels by subscale microhardness profiling, Journal of Alloys and Compounds 255 (1997) 130-134.
  • [24] J. Xu, X. Sun, X. Yuan, B. Wei, Hydrogen permeation and diffusion in low-carbon steels and 16Mn steel, Journal of Materials Science Technology 10 (1994) 92-96.
  • [25] J. Kittel, V. Smanio, M. Fregonese, L. Garnier, X. Lefebvre, Hydrogen induced cracking (HIC) testing of low alloy steel in sour environment: Impact of time of exposure on the extent of damage, Corrosion Science 52 (2010) 1386-1392.
  • [26] J. Ćwiek, Hydrogen degradation of high-strength weldable steels, Gdańsk University of Technology Publishers, Gdańsk, 2006 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0023-0050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.