PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compositional, physical and chemical modification of polylactide

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this article was to review some of the modification methods applied to improve mechanical, barrier and/or surface properties of polylactide (PLA). Design/methodology/approach: The presented modification methods were classified into three groups due to the dominant role of compositional, physical or chemical factor effecting the most PLA properties. Findings: It was found that incorporation of small amounts of montmorillonite up to 5% leads to formation of a nanocomposite with enhanced tensile strength and improved barrier properties. Corona treatment of pure PLA and PLA contained MMT nanofiller causes a significant decrease in the water contact angle and does not essentially affect the diiodomethane contact angle. This treatment leads to an increase in surface free energy that is much more significant for pure PLA than for PLA containing MMT nanofiller. It was also found that with increasing number up to 1000 of laser pulses of energies 5 mJ/cm2 an increase in surface free energy was observed, while the next laser pulses caused decrease of this energy. The determination and comparison of the influence of 3 wt.% of trimethylopropane trimethacylate (TMPTA) and 3 wt.% of trially isocyanurate (TAIC) crosslinking agents on the thermomechanical properties of electron beam irradiated PLA was reported. Research limitations/implications: A number of various modification methods are widely reported in literature. In this article a review of only such modification methods is presented, which are in line with the newest trends in polymer industry and science. Practical implications: There are a number of PLA properties, which need to be improved to satisfy specific application conditions. For that reasons researches are leading to find suitable modification methods to improve selected properties of PLA. Originality/value: This article presents some of modification methods, which are in line with the newest trends in polymer industry and science.
Rocznik
Strony
192--199
Opis fizyczny
Bibliogr. 36 poz., rys., tabl.
Twórcy
autor
  • Department of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85 064 Bydgoszcz, Poland, marzenk@ukw.edu.pl
Bibliografia
  • [1] A. Sodegard, M. Stolt, Properties of lactic acid based polymers and their correlation with composition, Progress in Polymer Science 27 (2002) 1123-1163.
  • [2] L. Yu, K. Dean, L.Li, Polymer blends and composites from renewable resources, Progress in Polymer Science 31 (2006) 576-602.
  • [3] O. Kenzo, I. Tomokazu, Y. Tadashi, Y. Masayuki, Miscibility, mechanical and thermal properties of poly(lactic acid)/polyester-diol blends, European Polymer Journal 48 (2009) 2304-2312.
  • [4] L. Lim, R. Auras, M. Rubino, Progress in Polymer Science 33 (2008) 820-852.
  • [5] L.-T. Lim, R. Auras, M. Rubino, Processing technologies for poly(lactic acid), Progress in Polymer Science 33 (2008) 820-852.
  • [6] M. Żenkiewicz, J. Richert, Thermoforming of polylactide nanocomposite films for packaging containers, Polymers 54 (2009) 299-302.
  • [7] M. Żenkiewicz, J. Richert, P. Rytlewski, K. Moraczewski, M. Stepczyńska, T. Karasiewicz, Characterisation of multi-extruded poly(lactic acid), Polymer Testing 28 (2009) 412-418.
  • [8] P. Rytlewski, M. Żenkiewicz, Laser induced surface modification of polystyrene, Applied Surface Science 256 (2009) 857-861.
  • [9] P. Rytlewski, M. Żenkiewicz, Effects of Laser Irradiation on Surface Properties of Poly(ethylene terephthalate), Journal of Adhesion Science and Technology 24 (2010) 685-697.
  • [10] K. Van de Velde, P. Kiekens, Biopolymers, Overview of several properties and consequences on their applications, Polymer Testing 21 (2002) 433-442.
  • [11] D. Garlotta, A literature review of poly(lactic acid), Journal of Polymers and the Environement 9 (2001) 63-84.
  • [12] E. Piórkowska, Z. Kuliński, K. Gadzinowska, Plasticization of polylactide, Polimery 54 (2009) 83-90 (in Polish).
  • [13] H.T. Oyama, Super-tough poly(lactid acid) materials: Reactive blending with ethylene copolymer, Polymer, 50 (2009) 747-751.
  • [14] H.M.C. de Azeredo, Nanocomposites for food packaging applications, Food Research International 42 (2009) 1240-1253.
  • [15] P. Bordes, E. Pollet, L. Avérous, Nano-biocomposites, Biodegradable polyester/nanoclay systems, Progress in Polymer Science 34 (2009) 125-155.
  • [16] R. Sothornvit, J.-W. Rim, S.-I. Hong, Effect of nano-clay type on physical and antimicrobial properties of whey protein isolate/clay composite films, Journal of Food Engineering 91 (2009) 468-473.
  • [17] A.R. McLauchin, N.L. Thomas, Preparation and thermal characterisation of poly(lactic acid) nanocomposites prepared from organoclays based on an amphoretic surfactant, Polymer Degradation and Stab 94 (2009) 869-872.
  • [18] L. Urbanczyk, F. Ngoundjo, M. Alexandre, C. Jérôme, C. Detrembleur, C. Calberg, Synthesis of polylactide/clay nanocomposites by in situ intercalative polymerization in supercritical carbon dioxide, European Polymer Journal 45 (2009) 643-648.
  • [19] E. Nieddu, L. Mazzucco, P. Gentile, T. Benko, V. Balbo, R. Mandrile, G. Ciardelli, Preparation and biodegradation of clay composites of PLA, Reactive and Functional Polymers 69 (2009) 371-379.
  • [20] M. Żenkiewicz, J. Richert, Permeability of polylactide nanocomposite films for water vapour, oxygen and carbon dioxide, Polymer Testing 27 (2008) 835-840.
  • [21] M. Żenkiewicz, J. Richert, A. Różański, Effect of blow moulding ratio on barrier properties of polylactide nanocomposite films, Polymer Testing 29 (2010) 835-840.
  • [22] J.E. Mark (Ed.), Polymer data handbook, Oxfor University Press, 1999.
  • [23] M. Żenkiewicz, J. Richert, A. Różański, Effect of blow moulding ratio on mechanical properties of polylactide nanocomposite films, Polimery 55 (2010) 74-81.
  • [24] M. Żenkiewicz, J. Richert, P. Rytlewski, K. Moraczewski, Some effects of corona plasma treatment of polylactide/montmorillonite nanocomposite films, Plasma Processes and Polymers, 6 (2009) 387-391.
  • [25] D. Bäuerle, R. Denk, J.D. Pedarning, K. Piglmayer, J. Heitz, G. Schrems, Perspectives of laser processing and chemistry, Applied Physics A 77 (2003) 203-207.
  • [26] P. Rytlewski, M. Żenkiewicz, Laser modification of polymeric materials. Part 1. Physical base of operation and criteria of choice of lasers, Polimery 52 (2007) 243-250.
  • [27] Y. Novis, R. Meulemeester, M. Chtaïb, Pireaux J., Caudano R. XPS and SEM study of UV-laser induced surface modification of polymers, British Polymer Journal 21 (1989) 147-153.
  • [28] P. Rytlewski, M. Żenkiewicz, Laser modification of polymeric materials. Part 2, Laser modification of polymeric materials. Part 2. Chemical reactions induced by laser light, Inter. Polymer Science and Technology 34 (2007) 403-410.
  • [29] P. Rytlewski, M. Żenkiewicz, Laser modification of polymeric materials. Part 3. Laser ablation and changes of geometric structure of the surface, Polymers 52 (2007) 634-639.
  • [30] A. Welle, S. Horn, J. Schimmelpfeng, D. Kalka, Photo-chemically patterned polymer surfaces for controlled PC-12 adhesion and neurite guidance, Journal of Neuroscience Methods 142 (2005) 243-250.
  • [31] C. Wochnowski, M.A. Shams Eldin, S. Metev, UV-laser-assisted degradation of poly(methyl methacrylate), Polymer Degradation and Stability 89 (2005) 252-264.
  • [32] J. Blazevska-Gilev, J. Kupcík, J. Šubrt, Z. Bastl, V. Vorlcek, A. Galiková, D. Spaseska, J. Pola, IR laser ablation of poly(vinyl chloride): Formation of monomer and deposition of nanofibres of chlorinated polyhydrocarbon, Polymer Degradation and Stability 91 (2006) 213-220.
  • [33] A.C. Duncan, F. Rouais, S. Lazare, L. Bordenave, Ch. Baquey, Effect of laser modified surface microtopochemistry on endothelial cell growth, Colloids and Surface B 54 (2007) 150-159.
  • [34] P. Rytlewski, R. Malinowski, K. Moraczewski, M. Żenkiewicz, Influence of some crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide, Radiation Physics and Chemistry 79 (2010) 1052-1057.
  • [35] A . Sodergard, M. Niemi, J.F. Selin, J.H. Nasman, Changes in Peroxide Melt-Modified Poly(L-Lactide), Industrial and Engineering Chemistry Research 34 (1995)1203-1207.
  • [36] M. Takamura, T. Nakamura, T. Takahashi, K. Kozama, Polymer Degradation and Stability 93 (2008) 1909-1916.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0023-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.