PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of coronary stents - material and biophysical conditions

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Purpose: The paper discusses application issues of using the metallic implants for treatment of the cardiovascular diseases. The analysis of the biophysical conditions of the heart – coronary vessels system has been used to distinguish the tissue environment properties which should be compatible with properties of the metal biomaterial and stent’s surface. On this basis the author presented results of experiments concerning the usefulness of the passive-carbon layer for surface treatment of vascular stents made of stainless steel. Design/methodology/approach: In order to determine the usefulness of the layer for implants in cardiology the following tests were carried out on the layer: structure, thickness, corrosion resistance, electrical properties and biocompatibility in experimental animals. The structure and thickness of the layer were tested in high resolution transmission electron microscope. Corrosion resistance was carried out by recording anodic polarization curves. Methodology of measurements took into consideration both implantation conditions and application of vascular stents. In tests concerning electrical properties of the layer, current-potential as well as capacity-potential characteristics were determined. Findings: The passive-carbon layer of nanocrystlline structure and high smoothness created on coronary stents’ surface fully ensures pitting corrosion resistance in both implantation and application conditions. Research limitations/implications: Deposition of the dielectric carbon layer on coronary stents’ made of stainless steel is effective method of reducing reactivity of their surface in blood environment and blood clotting in consequence. Originality/value: The need to determine the correct quality and properties of coronary stents was indicated. The properties refer to stents’ design, physio-chemical properties of the metallic biomaterial and its surface. Keywords: Biomaterials; Cr-Ni-Mo steel; Corrosion resistance; Electrical properties; Coronary stents
Rocznik
Strony
125--135
Opis fizyczny
Bibliogr. 51 poz., rys., tabl.
Twórcy
autor
  • Division of Biomedical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, zbigniew.paszenda@polsl.pl
Bibliografia
  • [1] Z. Paszenda, Forming of physicochemical properties of coronary stents made of Cr-Ni-Mo steel applied in interventional cardiology. Printing House of the Silesian University of Technology, Gliwice 2005 (in Polish).
  • [2] Z. Paszenda, Issues of metal materials used for implants in interventional cardiology, Engineering of Biomaterials 21 (2002) 3-9.
  • [3] H. Zhao, J. van Humbeeck, Electrochemical polishing of 316L stainless steel slotted tube coronary stents, Journal of Materials Science: Materials in Medicine, 13 (2002) 911- 916.
  • [4] T. Peng, P. Gibula, K. Yao, M. Goosen, Role of polymers in improving the results of stenting in coronary arteries, Biomaterials 17 (1996) 685-694.
  • [5] J. Lahann, D. Klee, Improvement of hemocompatibility of metallic stents by polymer coating, Journal of Materials Science: Materials in Medicine 10 (1999) 443-448.
  • [6] I. Verweire, E. Schacht, B. Qiang, K. Wang, Evaluation of fluorinated polymers as coronary stent coating, Journal of Materials Science: Materials in Medicine 11 (2000) 207-212.
  • [7] P. Serruys, M. Kutryk M, Handbook of coronary stens. Martin Dunitz Ltd. 1998.
  • [8] A. Colombo, G. Stankovic, J. Moses, Selection of coronary stent. Journal of the American College of Cardiology 6 (2002) 1021-1033.
  • [9] J. Marciniak, Z. Paszenda, W. Walke, J. Tyrlik-Held, W. Kajzer, Stents in minimally invasive surgery, Printing House of the Silesian University of Technology, Gliwice 2006 (in Polish).
  • [10] P. Serruys, B. Rensing, Handbook of coronary stents. Martin Dunitz Ltd. 2002.
  • [11]ISO 5832/1:2007 Implants of surgery - metallic materials - Part 1: Wrought stainless steel.
  • [12]EN 12006/3:1998 Non-active surgical implants - Part 3: Intravascular devices.
  • [13]EN ISO 14630:1997 Non-active surgical implants - General requirements.
  • [14]W. Walke, J. Marciniak, M. Kaczmarek, Biomechanical analysis of tibia - double threaded screw fixation, Archives of Materials Science and Engineering 30 (2008) 41-44.
  • [15]A. Krauze, J. Marciniak, Numerical method in biomechanical analysisi of intramedullary ostheosynthesis in children, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 120-126.
  • [16]J. Marciniak, M. Kaczmarek, Biomechanical usefulness of Polfix stabilizers in multi level fractures, Proceedings of the 10th International Scientific Conference "Achievements in Mechanics and Materials Engineering", Gliwice-Kraków-Zakopane, 2001, 347-350 (in Polish).
  • [17]A. Ziebowicz, The use of miniplates in mandibular fractures - biomechanical analysis, Journal of Materials Processing Technology 175 (2006) 452-456.
  • [18]A. Krauze, W. Kajzer, J. Marciniak, Biomechanical characteristic of intramedullary nails - femoral bone, Proceedings of the 11th International Scientific Conference "Achievements in Mechanics and Materials Engineering 2003", Gliwice-Zakopane, 2003, 533-558 (in Polish).
  • [19]F. Migliavacca, L. Petrini, Mechanical behaviour of coronary stents investigated through the finite element method, Journal of Biomechanics 35 (2002) 803-811.
  • [20]N. Benard, D. Coisne, R. Perrault, Experimental study of laminar blood flow through an artery treated by a stent implantation, Journal of Biomechanics 36 (2003) 991-99.
  • [21]W. Walke, Z. Paszenda, W. Jurkiewicz, Biomechanical behaviour of coronary stent design with OCC technology, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 199-202.
  • [22]W. Walke, Z. Paszenda, W. Jurkiewicz, Numerical analysis of three-layer vessel stent made from Cr-Ni-Mo steel and tantalum, International Journal of Computational Materials Science and Surface Engineering 1 (2007) 129-139.
  • [23]J. Marciniak, W. Walke, Numerical analysis of stent - coronary vessel system, Engineering of Biomaterials 38-42 (2004) 86-88.
  • [24]W. Walke, J. Filipiak, Experimental and numerical biomechanical analysis of vascular stent, Journal of Materials Processing Technology 164-165 (2005) 1263-1268.
  • [25]W. Walke, J. Filipiak, Experimental and numerical analysis of vascular stent, Proceedings of the 13th International Scientific Conference "Achievements in Mechanical and Materials Engineering 2005", Gliwice-Wisła, 2005, 699-702.
  • [26]J. Chen, Y. Leng, X. Tian, L. Wang, N. Huang, P. Chu, P. Yang, Antithrombotic investigation of surface energy and optical bandgap and haemocompatibility mechanism of Ti(Ta+5)O2 thin films, Biomaterials 23 (2002) 2545-2552.
  • [27]N. Huang, P. Yang, Y. Leng, J. Chen, H. Sun, J. Wang, Haemocompatibility of titanium oxide films, Biomaterials 24 (2003) 2177-2187.
  • [28]Z. Paszenda, J. Tyrlik-Held, W. Jurkiewicz, Investigations of antithrombogenic properties of passive-carbon layer, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 197-200.
  • [29]W. Van der Giessen, A. Lincoff, R. Schwartz, Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries, Circulation 94 (1996) 1690-1697.
  • [30]A. Lincoff, J. Furst, S. Ellis, E. Topol, Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model, Journal of American College of Cardiology 29 (1997) 808-816.
  • [31]D. Holmes, A. Camrud, M. Jorgenson, W. Edwards, R. Schwartz, Polymeric stenting in the porcine coronary artery model: differential outcome of exogenous fibrin sleeves versus polyurethane-coated stents, Journal of American College of Cardiology 24 (1994) 525-531.
  • [32]J. Baker, J. Horn, V. Nikolaychik, N. Kipshidze, Fibrin stent coatings in: Sigwart U. (ed): Endoluminal stenting. W.B. Saunders Company Ltd., London, Philadelphia, Toronto, Sydney, Tokio, 1996.
  • [33]R. Bonan, K. Bhat, T. Lefevre, Coronary artery stenting after angioplasty with self-expanding parallel wire metallic stents, American Heart Journal 121 (1991) 1522-1530.
  • [34]J. Zidar, J. Jackman, R. Gammon, Serial assessment of heparin coating on vascular responses to a new tantalum stent, Circulation 89 (1992) I-185.
  • [35]P. Hardhammar, H. Van Beusekom, H. Emanuelsson, Reduction in thrombic events with heparin-coated Palmaz-Schatz stents in normal coronary arteries, Circulation 93 (1996) 423-430.
  • [36]P. Serruys, H. Emanuelsson, W. Van der Giessen, Heparin-coated Palmaz-Schatz stents in human coronary arteries, Circulation 93 (1996) 412÷422.
  • [37]N. Chronos, K. Robinson, A. Kelly, Thrombogenicity of tantalum stents is decreased by surface heparin bonding, Circulation 92 (1995) I-490.
  • [38]I. De Scheerder, K. Wang, K. Wilczek, Experimental study of thrombogenicity and foreign body reaction induced by heparin-coated coronary stents, Circulation 95 (1997) 1549-1553.
  • [39]P. Serruys, J. Kutryk, Handbook of the coronary stents, Martin Dunitz Ltd., London, 2000.
  • [40]I. Buhaescu, H. Izzedine, A. Covic, Sirolimus-challenging current perspectives, Therapeutic Drug Monitoring 28 (2006) 577-584.
  • [41]S. Park, W. Shim, D. Ho, A paclitaxel-eluting stent for the prevention of coronary restenosis, The New England Journal of Medicine 348 (2003) 1537-1545.
  • [42]M. Beijk, J. Piek, XIENCE Veverolimus-eluting coronary stent system - a novel secondo generation drug-eluting stent, Expert Reviews of Medical Devices 4 (2007) 11-21.
  • [43]K. Tsuchida, H. Garcia-Garcia, A. Ong, Revisiting late loss and neointimal volumetric measurements in a drug-eluting stent trial: analysis from the SPIRIT FIRST trial, Catheterization and Cardiovascular Interventions 67 (2006) 188-197.
  • [44]M. Pfisterer, H. Brunner-la Rocca, P. Buser, Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents, Journal of the American College of Cardiology 19 (2006) 2584-2591.
  • [45] B. Lagerqvist, S. James, U. Stenestrand, Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden, The New England Journal of Medicine 356 (2007) 1009-1019.
  • [46] A. Farb, A. Boam, Stent thrombosis redux - The FDA perspective, The New England Journal of Medicine, 356 (2007) 984-987.
  • [47] Z. Paszenda, J. Marciniak, The influence of the base structure and carbon coating on the corrosion resistance of the Co-Cr-Mo alloy, Proceedings of the 5th International Scientific Conference „Achievements in Mechanical and Material Engineering 1996”, Wisła, 1996, 211 - 214.
  • [48] P. Niedzielski, S. Mitura, Z. Paszenda, J. Marciniak, Diamond coated implants for medicine, Proceedings of the 8th International Scientific Conference „Achievements in Mechanical and Materials Engineering 1999", Rydzyna, 1999, 423-428.
  • [49] Z. Paszenda, J. Marciniak, The influence of the base structure and carbon coating on the corrosion resistance of the Co-Cr-Mo alloy, Journal of Materials Processing Technology 78 (1998) 143-149.
  • [50] J. Szewczenko, J. Marciniak, W. Chrzanowski, Corrosion of Cr-Ni-Mo steel implants in conditions of sinusoidal current electrostimulation, Proceedings of the 9th International Scientific Conference „Achievements in Mechanical and Material Engineering 2000", Gliwice-Sopot-Gdańsk, 2000, 511-514.
  • [51] Z. Paszenda, J. Tyrlik-Held, Z. Nawrat, J. Wilczek, Usefulness of passive-carbon layer for implants applied in interventional cardiology, Journal of Materials Processing Technology 157-158C (2004) 399-404.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0023-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.