PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Life and operational safety of power systems and chemical plants

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The problem addressed in the paper is the description of an effort and durability of components under the conditions of mechanical and thermal interactions. The problems of proper material testing methods have been shown as the important part of the components life assessment methodology. Design/methodology/approach: The FEM modelling has been used to determine the stress and strain fields in the components and to describe their behaviour under mechanical and thermal loading. Findings: An appropriate models description has been developed. So far, experimental verification of the usefulness of the model description to determine the stress and strain patterns in particular object and for chosen operation conditions has been made. Research limitations/implications: The developed description should be useful in problems of behaviour predictions of high temperature components and their durability assessment under different mechanical and thermal loadings in industry practical applications. Originality/value: The method, which more precise description of power industry components behaviour makes possible have been shown in the work. The work is addressed to researchers interested in problems of component behaviour prediction under different loadings that we can meet in the operation practice and to power industry engineering maintenance staff.
Rocznik
Strony
38--63
Opis fizyczny
Bibliogr. 71 poz., rys., tabl.
Twórcy
autor
  • Department of Materials Technology, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland, jerzy.okrajni@polsl.pl
Bibliografia
  • [1] W. Bączkowski, Power plants, WNT, Warsaw, 1965 (in Polish).
  • [2] G.A. Webster, R.A. Ainsworth, High Temperature Component Life Assessment, Chapman Hall, London, 1994.
  • [3] A. Hernas, Thermal strength of steels and alloys, Silesian University of Technology Press, Gliwice, 1999 (in Polish).
  • [4] PN-92/M-34031: Pipelines of steam and hot water. General requirements and examinations, 1992 (in Polish).
  • [5] PN-79/M-34033: Pipelines of steam and waters. Calculating the thickness of walls of pipes, 1979 (in Polish).
  • [6] UDT. Specifications of the Technical supervisory staff. Pressure devices. Strength calculations, DT-UC-90/WO-O (in Polish).
  • [7] A. Hernas, J. Dobrzański, The permanence and destroying elements of boilers and steam turbines, Silesian University of Technology Press, Gliwice, 2003 (in Polish).
  • [8] TRD 301, TRD 508 Zylinderschalen unter innerem Überdruck. Berechung auf Wechselbeanspruchung durch schwellenden Innerdruck bzw. durch kombinierte Innerdruck und Temperaturänderungen, 1 Ausg. 4.75, 1975 (in German).
  • [9] I.A. Shibli Overview of HIDA Project, Proceedings of the 2th International HIDA Conference, Stuttgart, 2000.
  • [10] Nuclear Electric Ltd, Assessment Procedure for the High Temperature Response of Structure, Proceedings of the R5, Issue 2, UK, 1997.
  • [11] Polish Standard EN 13480-3:2002 (E).
  • [12] RWTÜV, Replicas for parts under creep according to TRD 508, Recommendation, 1983, 451-1983/1.
  • [13] S. Kocańda, Fatigue fracture of metals, WNT, Warsaw, 1978 (in Polish).
  • [14] S. Kocańda, A. Kocańda, Low-cycle endurance of metal, PWN, Warsaw, 1989.
  • [15] S. Kocańda, J. Szala, Bases of fatigue calculations, PWN, Warsaw, 1997 (in Polish).
  • [16] K.J. Miller, An introductory lecture on fatigue of metals, Course of Metal Fatigue, University of Sheffield, 1991.
  • [17] B. Tomkins, Fatigue failure and the integrity of structures, Course of Metal Fatigue, University of Sheffield, 1991.
  • [18] K.J. Miller, The three thresholds For Fatigue Crack Propagation, Fatigue and Fracture Mechanics, ASTM STP 1296 (1997) 267-286.
  • [19] N.N. Malinin, Creep calculations of the machines and the structures, Maszynostrojenije, Moscow, 1981 (in Russian).
  • [20] A. Jakowluk, Contemporary lines of research of creep of materiale, II Symphosy: “Issues of creep of materials”, Białystok, 1986 (in Polish).
  • [21] Ju.N. Rabotnow, Creep of the structural components), Maszynostrojenije, Moskwa, 1966 (in Russian).
  • [22] S.S. Manson, Thermal stresses and low-cycle fatigue, Maszynostrojenije, Moscow, 1974 (in Russian).
  • [23] S.S. Manson, M.H. Hirschberg, Fatigue Behaviour in Strain Cycling in the Low- and Intermediate-cycle Range, Fatigue an Interdisciplinary Approach, Syracuse University Press, 1964, 133-178.
  • [24] L.F. Coffin, Fatigue at high temperatures in Fatigue at Elevated temperatures, ASTM STP 520, 1973, 5-34.
  • [25] L.F. Coffin, Study of Cyclic-Thermal Stress in a Ductile Metals, Transactions ASME 76 (1954) 931.
  • [26] S.E. Feltner, J.D. Morrow, Microplastic Strein Hysteresis Energy as a Criterion for Fatigue Fracture, Journal of Basis Engineering D 83 (1961) l.
  • [27] L.F. Coffin, Fatigue at High Temperature Prediction and Interpretation, Proceeding of the Institution Mechanical Engineers, 1974.
  • [28] W.W. Moskwitin, Cyclic loadings of structural components, Nauka, Moscow, 1981 (in Russian).
  • [29] R.A. Dulniew, P.J. Katow, Thermal fatigue of metals, Maszynostrojenije, Moscow, 1980 (in Russian).
  • [30] A.P. Gusenkow, P.J. Kotow, Low-cycle fatigue under thermal loading, Maszynostrojenije, Moscow, 1983 (in Russian).
  • [31] A. Palmgren, Endurance of ball bearings, Z. Ver. dt. Ing. 68 (1924) 339.
  • [32] M.A. Miner, Cumulative damage in fatigue, Journal of Apply Mechanics 67 (1945) 159.
  • [33] K.J. Miller, An introductory lecture on fatigue of metals, Course of Metal Fatigue, University of Sheffield, 1991.
  • [34] J. Schijve, Fatigue of Structures and Materials in the 20th Century and the State of the Art, Proceedings of ECF 14th Conference: “Fracture Mechanics Beyond 2000”, Crakow, 211-262.
  • [35] J. Okrajni, G. Junak, Fatigue Damage Description of Steels at Elevated Temperatures, Proceedings of ECF 14th Conference: “Fracture Mechanics Beyond 2000”, Crakow, 2002, 369-376.
  • [36] L.F. Coffin, Fatigue at High Temperatures in Fatigue at Elevated Temperatures, ASTM STP 520, 1973, 5-34.
  • [37] S.S. Manson, A challenge of unity treatment of high temperature fatigue – a partisan proposal based on strain range partitioning in fatigue at elevated temperatures, in fatigue at elevated temperatures, ASTM STP 520, 1973, 744 -775.
  • [38] J.D. Landes, J.A. Begley, A Fracture Mechanics Approach to Creep Crack Growth, ASTM STP 590, 1976.
  • [39] K.M. Nikbin, G.A. Webster, C.E. Turner A Comparison of Methods of Correlating Creep Crack Growth, Fracture, 1977, 2,
  • [40] A. Neimitz, Crack growth in the elastic-plastic material, Kielce University of Technology Press, Kielce, 1983 (in Polish).
  • [41] A. Plumtree, Creep Fatigue Interaction in Type 304 Stainless Steel at Elevated Temperatures, Material Science IX/X 1977.
  • [42] R. Ohtani, S. Taira, Effects of non-linear stress-strain rate relation on deformation and fracture of materials in creep range, Journal of Engineering Materials and Technology. 101 (1979) 369
  • [43] B. Tomkins, Plastic and elastic-plastic model for fatigue crack growth, British Steel Corporation Physical Metallurgy Centre, Cambridge, 1973.
  • [44] A. Krasowskij, Brittlness of metals at law temperatures, Naukowa Dumka, Kijew, 1980 (in Russian).
  • [45] M. Shimiza, M.W. Brown, J. Miller, Fatigue Crack Propagation in Stainless Steel Subjected to Repeated Thermal Shock, ICM, 4.
  • [46] R.O. Ritchie, Near threshold fatigue crack propagation in steels, International Metals Reviews 24 (1979) 5-6.
  • [47] S. Taira, R. Ohtani, T. Komatsu, Application of J-Integral to High-Temperature Crack Propagation, Transactions of the ASME IV (1979) 101.
  • [48] N.E. Dowling, J.A. Begley, Fatigue Crack Growth During Gross Plasticity and the J-Integral, ASTM STP, 590, 1976.
  • [49] A. Neimitz Strength assessment of structural components containing crack - the basic components of SINTAP procedures), Kielce University of Technology Press, Kielce, (2004) in Polish.
  • [50] A.N. Stroh, The Formation of Cracks as a Result of Plastic Flow, Proceedings of the Royal Society A 223 (1955) 404.
  • [51] A.H. Cottrell, D. Hull, Extrusion and Intrusion by Cyclic Slip In Copper, Proceedings of the Royal Society A, 1957, 211-213.
  • [52] P.J.E. Forsyth, The Application of Fractography to Fatigue Failure Investigations, Royal Aircraft Establishment Techical Note, 1957, 257.
  • [53] D.A. Ryder, Some Quantitative Information Obtained From the Examination of Fatigue Fracture Surfaces, Royal Aircraft Establishment Technical Note, 288, 1958.
  • [54] C.Q. Bowles, The role of Environment, Frequency and Wave Shape During Fatigue Crack Growth In Aluminum Alloys, Doctor Thesis, Delft University of Technology, Also Report LR-270, 1978.
  • [55] C.Q. Bowles, J. Shijve, Crack Tip Geometry for Fatigue Cracks Grown in Air and Vacuum, ASTM STP 811, 1983, 400-426.
  • [56] J. Okrajni, K. Mutwil, C M. Cieśla, The strength criterias of the state assessment of power plant components after long operation period), Energetic 9 (2001) 528-533 (in Polish).
  • [57] E. Risiński, A. Iluk, T. Smolnicki, The analysis of the stress state in the local areas of superheater chambers, Proceedings of the conference “PIRE 99 – Problems and innovations in energetic renovations, Polanica Zdrój, 1999 (in Polish).
  • [58] J. Okrajni, Thermo-mechanical conditions of power plant components, Journal of Achievements in Materials and Manufacturing Engineering 33/1 (2009) 53-61.
  • [59] Z. Orłoś, Thermal stresses, Polish Scientific Publishers PWN, Warsaw, 1991 (in Polish).
  • [60] J. Okrajni, K. Mutwil, M. Cieśla: Steam pipelines’ effort and durability, Journal of Achievements in Materials and Manufacturing Engineering 22/2 (2007) 63 - 66.
  • [61] J. Bressers, Fatigue under Thermal and Mechanical loading, Kluwer Academic Publishers, Netherlands, 1996.
  • [62] P. Hähner et al.. Research and development into a European code-of-practice for strain-controlled thermo-mechanical fatigue testing, International Journal of Fatigue 30/2 (2008) 372-381.
  • [63] H. Sehitoglu, Thermal and Thermo-mechanical Fatigue of Structural Alloys, Fatigue and Fracture, 19, ASM Handbook, 1996, 527-556.
  • [64] J. Okrajni, K. Mutwil, M. Cieśla, Steam pipelines’ effort and durability, Journal of Achievements in Materials and Manufacturing Engineering 22/2(2007) 63 - 66.
  • [65] D. Renowicz, A. Hernas, M. Ciesla, K. Mutwil, Degradation of the cast steel parts working in power plant pipelines, Proceedings of the 15th Scientific International Conference “AMME’2006”, Gliwice, 2006, 219-222.
  • [66] J. Okrajni, G. Junak. A. Marek, Modelling of the deformation process under thermo-mechanical fatigue conditions, International Journal of Fatigue 30/2 (2008) 324-329.
  • [67] J. Okrajni, A. Marek, G. Junak, Description of the deformation process under thermo-mechanical fatigue, Journal of Achievements in Materials and Manufacturing Engineering 21/2 (2007) 15-24.
  • [68] D. Renowicz, M. Cieśla, Crack initiation in steels parts working in boilers and steam pipelines, Journal of Achievements in Materials and Manufacturing Engineering 21/2 (2007) 49-52.
  • [69] A. Neimitz, I. Dzioba, M. Graba, J. Okrajni, The assessment of the strength and safety of the operation high temperature components containing crack, Kielce University of Technology Press, Kielce, 2008.
  • [70] High Temperature Defects Assessment (HIDA) Project, Proceedings of the 2th International HIDA Conference, Stuttgart, 2000.
  • [71] Proceedings of the 3th International HIDA and INTEGRITY Conference, Oeiras - Lisbon, Portugal, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0023-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.