PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of surface supersaturation in Monte Carlo simulations of single crystal growth

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this study is to propose a new calculation method using Monte Carlo simulations making it possible to estimate surface supersaturation and its transient behavior. Design/methodology/approach: Monte Carlo simulation method is used for investigations of crystal growth from microscopic point of view. It is assumed that the surface supersaturation may be represented by the number of growth units adsorbed on the crystal surface at any given moment. Findings: The presented method allows us to analyze the surface configuration of a growing crystal face and the mechanism of single crystal growth in various assumed growth conditions (supersaturation, temperature). Research limitations/implications: The results of the performed simulations show the influence of changes in bulk supersaturation on the behavior of surface supersaturation, which is very difficult to experimentally measure. In this way, some analytical results calculated previously and concerning transient behavior of surface supersaturation can also be verified. Originality/value: For the first time, Surface Roughening Coefficient (SRC) is defined and the method of its calculation is shown. The SRC coefficient allows us to estimate surface supersaturation determining growth mechanism and, in consequence, determining the quality of grown crystals. The results are useful for control of growth process to obtain good quality single crystals.
Rocznik
Strony
91--95
Opis fizyczny
Bibliogr. 20 poz., rys., tabl.
Twórcy
autor
autor
autor
  • Institute of Physics, Technical University of Lodz, ul. Wólczańska 219, 90-924 Łódź, Poland, mirarak@p.lodz.pl
Bibliografia
  • [1] M. Rak, Transient Behaviour of Surface Supersaturation Caused by Variation in Bulk Supersaturation, Surface Science 442 (1999) 149-160.
  • [2] M. Rak, Transient Behaviour of Surface Supersaturation Caused by an Abrupt Change in Bulk Supersaturation, Surface Science 494 (2001) 60-74.
  • [3] J. P. Van der Eerden, Crystal Growth Mechanisms, Handbook of Crystal Growth, 1a. Fundamentals, Editor D.T.J. Hurle, North-Holland, Amsterdam, 1993, 307-476.
  • [4] G. H. Gilmer, P. Bennema, Simulation of Crystal Growth with Surface Diffusion, Journal of Applied Physics 43 (1972) 1347-1360.
  • [5] G. H. Gilmer, P. Bennema, Computer simulation of crystal surface structure and growth kinetics, Journal of Crystal Growth 13/14 (1972) 148-153.
  • [6] M. Rak, M. Izdebski, A. Brozi, Kinetic Monte Carlo Study of Crystal Growth from Solution, Computer Physics Communications 138 (2001) 250-263.
  • [7] J.-W. Lee, N. M. Hwang, D.-Y. Kim, Growth morphology of perfect and twinned face-centered-cubic crystals by Monte Carlo simulation, Journal of Crystal Growth 250 (2003) 538-545.
  • [8] W. J. P. Van Enckevort, J. H. Los, Tailor-made inhibitors in crystal growth: A Monte Carlo simulation study, Journal of Physical Chemistry C 112/16 (2008) 6380-6389.
  • [9] J. Kundin C. Yürüdü, J. Ulrich and H. Emmerich, A phase-field/Monte-Carlo model describing organic crystal growth from solution, The European Physical Journal B - Condensed Matter and Complex System 70 (2009) 403-412.
  • [10] Ch. Misbah, O. Pierre-Louis, Y. Saito, Crystal surfaces in and out of equilibrium: A modern view, Review of Modern Physics 82 (2010) 981-1040.
  • [11] T. P. Schulze and P. Smereka, An Energy Localization Principle and its Application to Fast Kinetic Monte Carlo Simulation of Heteroepitaxial Growth, Journal of the Mechanics and Physics of Solids 57 (2009) 521-538.
  • [12] M. Saum, T. P. Schulze and C. Ratsch, Inverted List Kinetic Monte Carlo with Rejection Applied to Directed Self- Assembly During Epitaxial Growth, Communications in Computational Physics 6 (2009) 553-564.
  • [13] M. Saum and T. P. Schulze, The Role of Processing Speed in Determining Step Patterns during Directional Epitaxy, Discrete and Continuous Dynamical Systems B 11 (2009) 443-457.
  • [14] A. Ali Messaoud1, A. Chikouche, A. Estèv, G. Landa, M. Djafari Rouhani, Atomic Scale Simulation of Thin Film Growth by Kinetic Monte Carlo Method, International Journal of Recent Trends in Engineering 2 (2009) 85-88.
  • [15] T. P. Schulze, P. Smereka, An Energy Localization Principle and its Application to Fast Kinetic Monte Carlo Simulation of Heteroepitaxial Growth, Journal of the Mechanics and Physics of Solids 57 (2009) 521-538.
  • [16] M. Saum, T. P. Schulze and C. Ratsch, Inverted List Kinetic Monte Carlo with Rejection Applied to Directed Self- Assembly During Epitaxial Growth, Communications in Computational Physics 6 (2009) 553-564.
  • [17] M. Saum, T. P. Schulze, The Role of Processing Speed in Determining Step Patterns during Directional Epitaxy, Discrete and Continuous Dynamical Systems B 11 (2009) 443-457.
  • [18] P. Bennema, G. H. Gilmer, Kinetics of crystal growth, in: Crystal Growth: An Introduction, ed. P. Hartman, North- Holland Publishing Company 263-327 (1973).
  • [19] P. Bennema, Growth Forms of Crystals, Possible Implications for Powder Technology, KONA Powder and Particle Journal 10 (1992) 25-40.
  • [20] P. Bennema, Growth and Morphology of Crystals Integration of Theories of Roughening and Hartman-Perdok Theory, Handbook of Crystal Growth, 1a. Fundamentals, Editor D.T.J. Hurle, North-Holland, Amsterdam, 1993, 477-581.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0022-0086
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.