PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Difference in acceleration of electrons, protons and deuterons in a laser beam

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this paper is to find in a numerical way the main differences in the trajectories and kinetic energies of electrons, protons and deuterons accelerated in the laser or maser beams propagating in a vacuum, with an additionally applied external static co-axial magnetic field. The accelerated particles to the well defined energies are of interest in many applications, among others in medicine or in processing of different materials. Design/methodology/approach: Due to differences in masses the comparison between the acceleration processes of electrons, protons and deuterons is possible to perform after appropriate parameters of radiation of a laser, maser and a static magnetic field have been designed. Findings: The quantitative illustrations of the calculation results in a graphical form enable to discuss the main differences in the acceleration process of electrons, protons and deuterons. It was found that the rate at which a particle gains the energy depends not only on the particle’s mass but also on the stage of the process. Due to the mass differences, in order to keep a particle inside the radiation beam, significantly different static magnetic fields should be used to each kind of a particle. The authors have found an answer to the question why the rate at which particles energy increases in time, is different for different particles and why the difference depends on a stage of the acceleration process. Research limitations/implications: Limits in the energy of accelerated particles are caused by the limits of laser or maser beam energy or power available at present and the static magnetic fields. Originality/value: The authors show, in an exact numerical way, the values of the acceleration equipment parameters which should be selected to obtain the desired energy of the accelerated particles. It is explained why the rate at which a particle gains the energy depends on the stage of the process and on the particle’s mass.
Rocznik
Strony
82--90
Opis fizyczny
Bibliogr. 17 poz., rys., tabl.
Twórcy
autor
  • Department of Applied Physics, K. Pulaski Technical University of Radom, ul. J. Malczewskiego 20A, 26-600 Radom, Poland, malachowski.m.j@interia.pl
Bibliografia
  • [1] V. I. Berezhiani, N. L. Shatashvili, On the “vacuum heating” of plasma in the field of circularly polarized laser beam, Europhysics Letters 76 (2006) 70-73.
  • [2] Y. I. Salamin, Single-electron dynamics in a tightly focused laser beat wave: acceleration in vacuum, Journal of Physics B: Atomic, Molecular and Optical Physics 38 (2005) 4095- 4110.
  • [3] D. N. Gupta, N. Kant, D. E. Kim, H. Suk, Electron acceleration to GeV energy by a radially polarized laser, Physics Letters A 368 (2007) 402-407.
  • [4] Z. Sheng, L. Zhu, M. Y. Yu, Z. Zhang, Electron acceleration by intense laser pulse with echelon phase modulation, New Journal of Physics 12 (2010) 1-8.
  • [5] C. Benedetti, P. Londrillo, T. V. Liseykina, A. Macchi, A. Sgattoni, G. Turchetti, Ion acceleration by petawatt class laser pulses and pellet compression in a fast ignition scenario, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 606/1-2 (2009) 89-93.
  • [6] Y. I. Salamin, Z. Harman, C. H. Keitel, Direct high-power laser acceleration of ions for medical applications, Physical Review Letters 100 (2008) 155004-155008.
  • [7] K. W. D. Ledingham, P. McKenna, and R. P. Singhal, Applications for Nuclear Phenomena Generated by Ultra- Intense Lasers Science 300 (2003) 1107-1111.
  • [8] P. Baum and A.H. Zewail, Attosecond electron pulses for 4D diffraction and microscopy, Proceedings of the National Academy of Science 104 (2007) 18409-18414.
  • [9] V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, K. T. Phuoc, Principles and applications of compact laser-plasma accelerator, Nature Physics 4/6 (2008) 447-453.
  • [10] T. Tajima, G. Mourou, Zettawatt-exawatt lasers and their applications in ultrastrong-field physics, Physical Review Special Topics- Accelerators and Beams 5 (2002) 031301-031309.
  • [11] M. J. Małachowski, A. Dubik, Acceleration of charged particles in laser beam, Archives of Materials Science and Engineering 40/2 (2009) 5-10.
  • [12] A. Dubik, M. J. Małachowski, Acceleration of particles in laser and maser beams. Impact of the optical Doppler effect, Monograph No…, Published at Radom University of Technology, Radom, 2010.
  • [13] A. Dubik, Movement of charged particles in electromagnetic field, (in Polish) Monograph No 101, Published at Radom University of Technology, Radom, 2007; A. Dubik, M. J. Małachowski, Exact solution of relativistic equations for charged particle motion in laser beam with static axial magnetic field, Biul. WAT LVIII 1 (2009) 7-32 (in Polish).
  • [14] A. Dubik, M. J. Małachowski, Basic features of a charged particle dynamics in a laser beam with static axial magnetic field, Opto-Electronics Review 17/4 (2009) 275-286.
  • [15] A. Dubik, M. J. Małachowski, Resonance acceleration of a charged particle in a laser beam and static magnetic field, Journal of Technical Physics 50/2 (2009) 75-98.
  • [16] F. V. Hartemann, S. N. Fochs, G. P. Le Sage, N. C. Luhmann, Jr., J. G. Woodworth, M. D. Perry, Y. J. Chen, A. K. Kerman, Nonlinear ponderomotive scattering of relativistic electrons by an intense laser field at focus, Physical Review E 51 (1995) 4833-4843.
  • [17] J. Olesik, Z. Olesik, Electron emission yield of induced photoemission effect in thin ITO layers, Solid-State Electronics, 46/11 (2002) 1913-1918; J. Olesik, Z. Olesik, Malter effect in thin ITO films, Optica Aplicata 39/4 (2009) 903-914.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0022-0085
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.