Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The aim of the paper is to analyze how to improve the quality of the screen printed contacts of silicon solar cells. This means forming front side grid in order to decrease contact resistance. Design/methodology/approach: The topography of screen printed contacts were investigated using ZEISS SUPRA 25 scanning electron microscope (SEM) with an energy dispersive X-ray (EDS) spectrometer for microchemical analysis. Front collection grid was created using two types of Ag pastes.The Transmission Line Model (TLM) patterns were fabricated by screen printing method on p – type Czochralski silicon Cz-Si wafer with n+ emitter without texture and with a titanium oxide (TiOx) layer as an antireflection coating (ARC). Electrical properties of contacts were investigated using TLM. Findings: This work presents a conventional analysis of a screen printing process for contact formation in the crystalline silicon solar cells. The seed layer was created using silver pasts by the screen printed metallization. These contact structures were investigated using SEM to gain a better understanding of the obtained electrical parameters. Research limitations/implications: The contact resistance of the screen-printed metallization depends not only on the kind of applied paste and firing conditions, but is also strongly influenced by the surface morphology of the silicon substrate. Practical implications: Contact formation is an important production step to be optimized in the development of high efficiency solar cells. Originality/value: The effect of co-firing different pasts (especially a past, which was prepared using silver nano-powder) on electrical properties of silicon wafers.
Wydawca
Rocznik
Tom
Strony
57--65
Opis fizyczny
Bibliogr. 19 poz., rys., tabl.
Twórcy
autor
autor
autor
autor
- Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
Bibliografia
- [1] T. Burakowski, T. Wierzchoń, Surface engineering of metals. WNT, Warsaw, 1995.
- [2] M. Alemán, A. Streek, P. Regenfuβ, A. Mette, R. Ebert, H. Exner, S. W. Glunz, G. Willeke, Laser micro-sintering as a new metallization technique for silicon solar cells, Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 2006 (CD-ROM).
- [3] T. Petch, P. Regenfuβ, R. Ebert, L. Hartwig, S. Klötzer, T. Brabant, H. Exner, Industrial laser micro sintering, Rapid Prototyping Journal 11 (2004) 18-25.
- [4] D. M. Huljic, S. Thhormann, R. Preu, R. Lüdemann, G. Willeke, Pad printing front contacts for c-Si solar cells-a technological and economical evaluation, Proceedings of the 29th IEEE PVSC, New Orleans, Louisiana, 2002, 126-129.
- [5] F. C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques, Solar Energy Materials and Solar Cells 93 (2009) 394-412.
- [6] S. W. Glunz, J. Dicker, M. Esterie, M. Hermie, J. Iserberg, F. Kamerewerd, J. Knobloch, D. Kray, A. Leimenstoll, F. Lutz, D. Oβwald, R. Preu, S. Rein, E. Schäffer, C. Schetter, H. Schmidhuber, H. Schmidt, M. Steuder, C. Vorgrimler, G. Willeke, High-efficiency silicon solar cells for lowillumination applications, Proceedings of the Photovoltaic Specialists Conference, New Orleans, 2002, 450-453.
- [7] W. Neu, A. Kress, W. Jooss, P. Fath, E. Bucher, Low-cross multicrystalline back-contact silicon solar cells with screen printed metallization, Solar Energy Materials and Solar Cells 74/1-4 (2002) 139-146.
- [8] V. Gazus, K. Feldrapp, R. Auer, R. Brendel, M. Schultz, Dry processing of silicon solar cells in a large area microwave plasma reactor, Solar Energy Materials and Solar Cells 77 (2002) 277-284.
- [9] N. B. Mason, O. Schultz, R. Russel, S. W. Glunz, W. Warta, 20.1% efficient large area cell on 140 micron thin silicon wafer, Proceedings of the 21st European Photovoltaic Solar Energy Conference EU PVSEC’06, Dresden, Germany, 2006, 521.
- [10] M. A. Green, A. W. Blakers, S. R. Wenham, et al., Improvements in silicon solar cell efficiency, Proceedings of the 19th IEEE Photovoltaic Specialists Conference PVSC’85, Las Vegas, 1985, 39-42.
- [11] L. A. Dobrzański, A. Drygała, P. Panek, M. Lipiński, P. Zięba, Development of the laser method of multicrystalline silicon surface texturization, Archives of Materials Science and Engineering 38/1 (2009) 5-11.
- [12] L. A. Dobrzański, A. Drygała, Laser texturization in technology of multicrystalline silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering 29/1 (2008) 7-14.
- [13] L. A. Dobrzański, A. Drygała, Processing of silicon surface by Nd:YAG laser, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 321-324.
- [14] L. A. Dobrzański, A. Drygała, P. Panek, M. Lipiński, P. Zięba, Application of laser in silicon surface processing, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 179-182.
- [15] L. A. Dobrzański, M. Musztyfaga, A. Drygała, P. Panek, K. Drabczyk, P. Zięba, Manufacturing solar cells using screen painting, Proceedings of the 1st KKF Conference, Krynica-Zdrój, 2009 (CD-ROM).
- [16] A. Klimpel, A. Rzeźnikiewicz, Ł. Janik, Study of laser welding of copper sheets, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 467-470.
- [17] A. Goetzberg, J. Knobloch, B. Voß, Crystalline silicon solar cells. John Wiley and Sons, 1994.
- [18] E. G. Woelk, H. Kräutle, H. Beneking, Measurement of low resistance ohmic contacts on semiconductors, IEEE Transactions on Electron Device 33/1 (1986) 19-22.
- [19] A. Drygała, The influence of laser texturing on photovoltaic properties of polycrystalline silicon, Doctoral dissertation, The main library of Silesian University, Gliwice, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0022-0082