PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Frequency dependence of the self-heating effect in polymer-based composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The self-heating effect caused by viscous energy dissipation in polymer-based composite structures subjected to harmonic loads is considered to have a great influence on the residual life of the component. The purpose of the conducted investigations is the determination of the dynamic mechanical behaviour of a polymer-based composite material under different excitation frequencies and temperatures. Design/methodology/approach: The dynamic mechanical analysis was employed for measurements of temperature and frequency dependence of the complex rigidity parameters. Obtained loss rigidity curves for different load frequencies enable the determination of the glass-transition temperatures and finally frequency-dependence of the loss rigidity determined on the basis of the kinetic molecular theory and Williams-Landel-Ferry (WLF) hypothesis. Findings: The dependency between glass-transition temperature and excitation frequency has been investigated. The activation energy of the phase transition as well as the temperature dependence of the shift factor was calculated. The glass-transition temperature and constants of WLF equation enable the determination of temperature and frequency dependence of the loss rigidity according to the time-temperature superposition principle. Research limitations/implications: The ranges of temperatures were limited to 30-150 °C and excitation frequencies to 1-200 Hz, the behaviour of the composite material outside these ranges can be estimated based on the theoretical assumptions only. Obtained dependencies are correct only for linearly viscoelastic materials. Practical implications: Obtained dependencies can be useful for estimation of the mechanical and thermal degradation of polymer-based composites and can be subsequently applied for the determination of fatigue, crack growth and residual life of composite structures. Originality/value: The determination of temperature and frequency dependence of the loss rigidity gives an opportunity to obtain the self-heating temperature distribution of the polymer-based composite structures under harmonic loading.
Rocznik
Strony
9--15
Opis fizyczny
Bibliogr. 23 poz., rys., tabl.
Twórcy
autor
autor
autor
autor
  • Department of Fundamentals of Machinery Design, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland, andrzej.katunin@polsl.pl
Bibliografia
  • [1] W. Hufenbach, F. Adam, M. Zichner, M. Krahl, Development and production of composites in multimaterial design, Proceedings of the 2th Aachen-Dresden International Textile Conference, Dresden, 2008.
  • [2] A. Katunin, W. Moczulski, The conception of a methodology of degradation degree evaluation of laminates, Maintenance and Reliability 41 (2009) 33-38.
  • [3] K. P. Menard (Ed.), Dynamic mechanical analysis: A practical introduction, CRC Press, Washington D.C., 1999.
  • [4] P. Postawa, A. Szarek, J. Kokszul, DMTA method in determining strength parameters of acrylic cements, Archives of Materials Science and Engineering 28 (2007) 309-312.
  • [5] I. K. Senchenkov, V. G. Karnaukhov, V. I. Kozlov, Toward a theory of governing equations of thermoviscoelasticity for periodic deformation, Trans.: Prikladnaya Mekhanika 22 (1986) 97-104.
  • [6] F. Dinzart, A. Molinari, R. Herbach, Thermomechanical response of viscoelastic beam under cyclic axial loading; self-heating and thermal failure, Archives of Mechanics 60 (2008) 59-85.
  • [7] A. Katunin, Self-heating effect in laminate plates during harmonic forced loading, Scientific Problems of Machine Operation and Maintenance 44 (2009) 73-84.
  • [8] A. Katunin, Analytical model of the self-heating effect in polymeric laminated rectangular plates during bending harmonic loading, Maintenance and Reliability 48 (2010) 91-101 (in Polish).
  • [9] A. Katunin, Influence of self-heating temperature on the fatigue strength of a plate made of laminated polymeric composite, International Applied Mechanics 45 (2009) 342.
  • [10] T. Da Silva Botelho, N. Isac, E. Bayraktar, A comparative study on the damage initiation mechanism of elastomeric composites, Archives of Computational Materials Science and Surface Engineering 1 (2009) 112-119.
  • [11] TA Instruments, 2980 Dynamic Mechanical Analyzer Operator’s Manual, 1997.
  • [12] EN-ISO 6721-1:2002. Plastics – Determination of dynamic mechanical properties – Part 1: General principles.
  • [13] L. L. Gao, X. Chen, S. B. Zhang, H. Gao, Mechanical properties of anisotropic conductive film with strain rate and temperature, Material Science and Engineering A 513-514 (2009) 216-221.
  • [14] Y. He, Thermomechanical and viscoelastic behaviour of a non-flow underfill material for flip-chip applications, Thermochimica Acta 439 (2005) 127-134.
  • [15] M. L. Williams, R. F. Landel, J. D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, Journal of the American Chemical Society 77 (1955) 3701-3707.
  • [16] J. D. Ferry, Viscoelastic properties of polymers, Third Edition, Wiley, New York, 1980.
  • [17] P. C. Heimenz, T. P. Lorge, Polymer chemistry, Boca Raton, 2007.
  • [18] C. A. Angell, Why C1 = 16-17 in the WLF equation is physical - and the fragility of polymers, Polymer 26 (1997) 6261-6266.
  • [19] S. Dąbrowa, Modelling of the degradation process of the composite rotor material and its influence on the dynamical rotor behaviour, MSc Thesis, Silesian University of Technology, 2006 (in Polish).
  • [20] M. Szczepanik, J. Stabik, G. Wróbel, Ł. Wierzbicki, Detecting of defects in polymeric materials using pulsed infrared thermography, Archives of Materials Science and Engineering 30 (2008) 29-32.
  • [21] J. Kaczmarczyk, M. Rojek, G. Wróbel, J. Stabik, A model of heat transfer in composites subjected to thermographic testing, Archives of Materials Science and Engineering 31 (2008) 105-108.
  • [22] G. Wróbel, Z. M. Rdzawski, G. Muzia, S. Pawlak, Quantitative analysis of the fiber content distribution in CFRP composites using thermal non-destructive testing, Archives of Materials Science and Engineering 41 (2010) 28-36.
  • [23] B. Diveev, A. Smolskyy, M. Sukhorolskyy, Dynamic rigidity and loss factor prediction for composite layered panel, Archives of Materials Science and Engineering 31 (2008) 45-48.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0022-0076
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.