PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of thermovision method to welding thermal cycle analysis

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper is to determine the possibility of of thermovision method application in the thermal cycle of Inconel 625 on 13CrMo4-5 steel pad welding thermal cycle analysis. Design/methodology/approach: Single- and multibead pad welding of steel 13CrMo4-5 by superalloy Inconel 625 has been carried out by means of GMA method in inert gas backing shielding, in horizontal position and 620 J/mm and 2100 J/mm heat input level. Quantitative data concerning infrared radiation emission as a basis for evaluation of thermal history of the applied object in order to assist interpretation changes occurring in padding welds and heat-affected have been obtained on the grounds of infrared radiation measurement by means of Flir Systems ThermaCAM SC2000 PAL infrared camera. Findings: As a result of the performed inspection, temperature distribution in the weld made by heat input energy E = 2100 J/mm; of cooling, both cooling curves of padding welds and HAZ during single- and multi sequence pad welding have been determined and also single bead self-cooling time and durability time during single bead pad welding. Practical implications: The full suitability of thermovision analysis of thermal cycle of pad welding. Specified self-cooling times will become a base for inference about microstructural transforms in HAZ, whereas cooling rate settlement determines necessary conditions to maintaining required intersequence temperature for assumed heat level input of pad welding, padding weld temperature in self-cooling time function and particular. Originality/value: The thermovision effect and thermal cycle of Inconel 625 on 13CrMo4 -5 steel pad welding thermal cycle analysis has been no yet determined.
Rocznik
Strony
131--137
Opis fizyczny
Bibliogr. 14 poz., rys., tabl.
Twórcy
autor
autor
  • Institute of Materials Science and Engineering, West Pomeranian University of Technology, Al. Piastów 19, 70-310 Szczecin, Poland, jnowacki@zut.edu.pl
Bibliografia
  • [1] N. K. Ravala, H. Fan, H. C. Wikle III, B. A. Chin, Modeling and sensing for penetration control of the saw process in the presence of welding perturbations, Proceedings of the American Society of Mechanical Engineers Heat Transfer/Fluids Engineering Summer Conference, Charlotte, North Carolina, 2004, 945-952.
  • [2] H. Fan, N. K. Ravala, H. C. Wikle III, B. A. Chin, Low-cost infrared sensing system for monitoring the welding process in the presence of plate inclination angle, Journal of Materials Processing Technology 140/1-3 (2003) 668-675.
  • [3] D. Dehelean, V. Safta, R. Cojocaru, T. Hälker, C. Ciuca, Monitoring the quality of friction stir welded joints by infrared thermography, Welding in the World 52 (2008) 621-626.
  • [4] A. Cobo, J. Mirapeix, O. M. Conde, P. B. García-Allende, F. J. Madruga, J. M. López-Higuera, Arc welding process control based on back face thermography: Application to the manufacturing of nuclear steam generators, Proceedings of the SPIE 6541 (2007).
  • [5] Z. Zheng, P. Shan, S. Hu, X. Wei, J. Yang, Numerical simulation of gas metal arc welding temperature field, China Welding 15/4 (2006) 55-58 (English Edition).
  • [6] F. Bardin, S. Morgan, S. Williams, R. McBride, A. J. Moore, J. D. C. Jones, Process control of laser conduction welding by thermal imaging measurement with a color camera, Applied Optics 44/32 (2005) 6841-6848.
  • [7] J. Nowacki, A. Wypych, Evaluation of the inconel 625 superalloy on 13CrMo4-5 steel pad welding thermal cycle by thermovision method, Welding Review 12 (2007) 3-7.
  • [8] Z. Rdzawski, B. Krupińska, M. Musztyfaga, Thermovision systems used to improve a technological process for hot-rolled copper and brass strips, Journal of Achievements in Materials and Manufacturing Engineering 36/2 (2009) 115-125.
  • [9] G. Rudowski, Thermovision and its application, WKiN, Warsaw, 1978.
  • [10] G. M. Carlomagno, Quantitative applications of infrared thermography in fluid mechanics, Proceedings of the Conference “Thermography and Infrared Thermometry”, Warszawa, 1996, 55-76.
  • [11] Z. Bogdanowicz, W. Napadlek, M. Prejskorn, Studies of stresses and their slow cooling for casting process using thermovision, Bulletin of the Military University of Technology 01 (2003) 125-136.
  • [12] Z. Rdzawski, W. Pala, The application examples of thermovision examinations in the non-ferrous metal industry, Proceedings of the 3rd Conference TTP’96, Warszawa, 1996, 177-182.
  • [13] G. Wróbel, G. Muzia, Z. M. Rdzawski, M. Rojek, J. Stabik, Thermographic diagnosis of fatigue degradation of epoxy glass composites, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 131-136.
  • [14] G. Muzia, Z. M. Rdzawski, M. Rojek, J. Stabik, G. Wróbel, Thermographic diagnostic of fatigue degradation of epoxy glass composites, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 123-126.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0022-0065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.