PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anaerobic digestion of maize hybrids for methane production

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This research project was aimed at optimising anaerobic digestion of maize and find out which maturity class of corn and which hybrid of a particular maturity class produces the highest rate of biogas and biomethane. Also the chemical composition of gases was studied. Design/methodology/approach: Biogas and biomethane production and composition in mesophilic (35 degrees C) conditions were measured and compared. The corn hybrids of FAO 300 - FAO 600 maturity class were tested. Experiments took place in the lab, for 35 days within four series of experiments with four repetitions according to the method DIN 38 414. Findings: Results show that the highest maturity classes of corn (FAO 500) increases the amount of biogas and biomethane. The greatest gain of biogas, biomethane according to maturity class is found with hybrids of FAO 400 and FAO 500 maturity class. Among the corn hybrids of maturity class FAO 300 - FAO 400, the hybrid PR38F70 gives the greatest production of biogas and biomethane. Among the hybrids of maturity class FAO 400 - FAO 500, the greatest amount of biogas and biomethane was produced by the hybrid PIXXIA (FAO 420). Among the hybrids of maturity class FAO 500 - FAO 600 the hybrid CODISTAR (FAO 500) the highest production of biomethane. Production of biomethane, which has the main role in the production of biogas varied with corn hybrids from 50-60 % of the whole amount of produced gas. Research limitations/implications: Economic efficiency of anaerobic digestion depends on the optimum methane production and optimum anaerobic digestion process. Practical implications: The results reached serve to plan the electricity production in the biogas production plant and to achieve the highest biomethane yield per hectare of maize hybrid. Originality/value: Late ripening varieties (FAO ca. 600) make better use of their potential to produce biomass than medium or early ripening varieties.
Rocznik
Strony
87--94
Opis fizyczny
Bibliogr. 16 poz., rys., tabl.
Twórcy
autor
autor
autor
autor
  • Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoce, Slovenia, peter.vindis@uni-mb.si
Bibliografia
  • [1] P. Vindis, B. Mursec, C. Rozman, F. Cus, A multi-criteria assessment of energy crops for biogas production, Journal of Mechanical Engineering (2009) (in press).
  • [2] T. Amon, B. Amon, V. Kryvoruchko, W. Zollitsch, K. Mayer, L. Gruber, Biogas production from maize and dairy cattle manure-Influence of biomass composition on the methane yield, Agriculture, Ecosystems and Environment 118 (2007) 173-182.
  • [3] P. Balsari, P. Bonfanti, E. Bozza, F. Sangiorgi, Evaluation of the influence of animal feeding on the performances of a biogas installation (mathematical model), Proceedings of the 3rd International Symposium “Anaerobic Digestion”, Boston, 1983, 7.
  • [4] N. Voca, B. Vargab, T. Krickaa, D. Curicc, V. Jurisica, A. Matina, Progress in ethanol production from corn kernel by applying cooking pre-treatment, Bioresource Technology 100/10 (2009) 2712-2718.
  • [5] D. P. Chynoweth, C. E. Turick, J. M. Owens, D. E. Jerger, M. W. Peck, Biochemical methane potential of biomass and waste feedstocks, Biomass Bioenergy 5 (1993) 95-111.
  • [6] V. N. Gunaseelan, Anaerobic digestion of biomass for methane production: a review, Biomass Bioenergy 13 (1997) 83-114.
  • [7] B. Mursec, M. Janzekovic, F. Cus, U. Zuperl, Comparison of rollers after sowing of buckwheat, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 269-272.
  • [8] P. Vindis, B. Mursec, M. Janzekovic, F. Cus, Processing of soybean meal into concentrates and testing for Genetically Modified Organism (GMO), Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 507-510.
  • [9] DIN 38 414, 1985. Determination of digestion behavior ‘‘sludge and sediments’’, Beuth Verlag, Berlin (in German).
  • [10] P. Vindis, B. Mursec, C. Rozman, M. Janzekovic, F. Cus, Biogas production with the use of mini digester, Journal of Achievements in Materials and Manufacturing Engineering 26/1 (2008) 99-102.
  • [11] SPSS Inc., SPSS Software, Release 15. SPSS Inc., Chicago, 2008.
  • [12] B. Mursec, F. Cus, Integral model of selection of optimal cutting conditions from different databases of tool makers, Journal of Materials Processing Technology 133 (2003) 158-165.
  • [13] P. Vindis, B. Mursec, M. Janzekovic, F. Cus, The Impact of mesophilic and thermophilic anaerobic digestion on biogas production, Journal of Achievements in Materials and Manufacturing Engineering 36/2 (2009) 192-198.
  • [14] J. A. Chandler, W. J. Jewell, J. M. Grossett, P. J. Vansoest, J. B. Robertson, Predicting methane fermentation biodegradability, Biotechnology and Bioengineering Symposium 10 (1980) 93-107.
  • [15] X. Tong, L. H. Smith, P. L. McCarty, Methane fermentation ofselected lignocellulosic materials, Biomass 21 (1990) 239-255.
  • [16] P. Weiland, Production and energetic use of biogas from energycrops and wastes in Germany, Applied Biochemistry and Biotechnology 109 (2003) 263-274.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0022-0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.