PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of off-line error correction method software to reproduce random signals on servo-hydraulic testers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Purpose: This paper presents an approach towards improving the test rig performance for road signals used in automotive shock absorber tests. The goal is to develop a method for correction of the test signal profile in the off-line mode. The method is intended to be implemented as a software solution without any changes either in hardware or the settings of the servo-hydraulic tester. Design/methodology/approach: A two-stage validation of the proposed correction method was conducted using a servo-hydraulic test rig and its first-principles model. The model is capable of capturing key dynamical properties over a wide operating range while being only moderately complex. Both simulation and experimental performance results are presented and discussed. Findings: The proposed method, both in the frequency and time domain, improves the tracking of the test signal by 10-20% and allows an accuracy of more than 90% to be gained using the best fit measure in the case of reproduction of white noise signals. Research limitations/implications: It is possible to consider more advanced model-based methods for performing off-line error correction. These methods can be used if an accuracy close to 100% is expected. Practical implications: The result of the investigations is the algorithm implemented in the LabView software to automatically perform the correction of the test signal before the test. Originality/value: The paper proposes a modern approach towards the validation process by applying a simulation environment. This ensures the involvement of arbitrary disturbance models to investigate key parameters of the correction method without expensive and time-consuming experimental validation. The developed model can be extended to a model of a shock absorber to simulate full interaction between the servo-hydraulic test rig and the tested product.
Rocznik
Strony
41--49
Opis fizyczny
Bibliogr. 13 poz., rys., tabl.
Twórcy
autor
autor
autor
autor
  • Tenneco Automotive Eastern Europe, Eastern European Engineering Center (EEEC), Control and Measuring Systems Department, ul. Bojkowska 59 B, 44-100 Gliwice, Poland,, damian.braska@tenneco.com
Bibliografia
  • [1] J. De Cuyper, H. De Keersmaecker, J. Swevers, D. Coppens, Design of a multivariable feedback control system to drive durability test rigs in the automotive industry, Proceedings of the 5th European Control Conference, Karslruhe, Germany, 1999.
  • [2] J. De Cuyper, J. Swevers, M. Verhaegen, P. Sas, HN Feedback control for signal tracking on a 4 poster in the automotive industry, Proceedings of the International Seminar on Modal Analysis, Leuven, Belgium, 2000, 61-68.
  • [3] E. Świtoński, A. Mężyk, S. Duda, S. Kciuk, Prototype magnetorheological fluid damper for active vibration control system, Journal of Achievements in Materials and Manufacturing Engineering 21/1 (2007) 55-62.
  • [4] T. Dzitkowski, A. Dymarek, Design and examining sensitivity of machine driving systems with required frequency spectrum, Journal of Achievements in Materials and Manufacturing Engineering 26/1 (2008) 49-56.
  • [5] J. De Cuyper, D. Coppens, C. Liefooghe, J. Swevers, M. Verhaegen, Advanced drive file development methods for improved service load simulation on multi axial durability test rigs. Proceedings of the International Acoustics and Vibration Asia Cconference, Singapore, 1998, 339-354.
  • [6] K. Smolders, M. Volckaert, J. Swevers, Tracking control of nonlinear lumped mechanical continuous-time systems: A model-based iterative learning approach, Mechanical Systems and Signal Processing 22 (2008) 1896-1916.
  • [7] J. Świder, G. Wszołek, Vibration analysis software based on a matrix hybrid graph transformation into a structure of a block diagram method, Journal of Materials Processing Technology 157-158 (2004) 256-261.
  • [8] J. Świder, P. Michalski, G. Wszołek, Physical and geometrical data acquiring system for vibration analysis software, Journal of Materials Processing Technology 164- 165 (2005) 1444-1451.
  • [9] Instron Structural Testing Systems – Reference Manual M32-13770-EN.
  • [10] G. Schothorst, Modeling of Long-Stroke Hydraulic Servo- System for Flight Simulator Motion Control and System Design, PD Thesis, Technical University of Delft, 1997.
  • [11] K. Białas, Reverse task of passive and active mechanical systems, Journal of Achievements in Materials and Manufacturing Engineering 23/2 (2007) 167-174.
  • [12] K. Białas, Synthesis of mechanical systems including passive or active elements, Journal of Achievements in Materials and Manufacturing Engineering 26/1 (2008) 67-74.
  • [13] MATHWORKS Inc., Matlab System Identification Toolbox Guide, Natick, MA: The Mathowrks Inc, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0022-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.