PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and characterization of carbon nanotubes decorated with platinum nanoparticles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In presented work results of synthesis of carbon nanotubes decorated with platinum nanoparticles by organic colloidal process as an example of direct formation of nanoparticles onto CNTs are reported. Design/methodology/approach: CNT were grown by chemical vapour deposition (CVD) by the catalytic decomposition of CO. To improve metal deposition onto CNTs the purification procedure with a mixture of concentrated HNO3–H2SO4 and H2O2 reduction reagent was applied. CNT–nanocrystal composite was fabricated by direct deposition of nanoparticles onto the surface of CNTs. Chemical composition and crystallographic structure of the obtained Pt/CNT composites were confirmed by energy dispersive X-ray spectroscopy (EDS) and by X-ray diffraction (XRD) measurements, while transmission (TEM) and scanning electron microscopy (SEM) were used for characterization of the morphology of composite as well as the distribution of nanocrystals on the CNTs surfaces. Findings: High efficiency of proposed method was confirmed as well as possibility of the coating of Pt nanoparticles onto CNTs, without aggregation of these particles. Research limitations/implications: Many others noble metals such as palladium, platinum, gold and iridium can be used for deposition on the CNTs using described procedure. Originality/value: Obtained material can be employed in constructing various electrochemical sensors. As a result of increasing of the surface area of Pt caused by the reduction of the size of used particles, fabricated sensor may be characterized by higher sensitivity.
Rocznik
Strony
184--189
Opis fizyczny
Bibliogr. 25 poz., rys., tabl.
Twórcy
autor
autor
autor
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, miroslawa.pawlyta@polsl.pl
Bibliografia
  • [1] Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics, Angewandte Chemie 48 (2009) 60-103.
  • [2] L. A. Dobrzański, M. Bilewicz, J. C. Viana, A. M. Cunha, Non-conventionally obtained polymer nanocomposites with different nano-clay ratios, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 212-217.
  • [3] A. Baron, D. Szewieczek, R. Nowosielski, Selected manufacturing techniques of nanomaterials, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 83-90.
  • [4] J. P. Stobrawa, Z. M. Rdzawski, Dispersion – strengthened nanocrystalline copper, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 35-42.
  • [5] J. P. Stobrawa, Z. M. Rdzawski, W. J. Głuchowski, Microstructure and properties of nanocrystalline copper – yttria microcomposites, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 83-86.
  • [6] B. Ziębowicz, D. Szewiczek, L. A. Dobrzański, Manufacturing technology of the composite materials: nanocrystalline material – polymer type, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 37-42.
  • [7] M. Endo, M. Strano, P. Ajayan, Potential Applications of Carbon Nanotubes, Carbon Nanotubes (2008) 13-61 (http://dx.doi.org/10.1007/978-3-540-72865-8_2).
  • [8] G. G. Wildgoose, C. E. Banks, R. G. Compton, Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications, Small 2 (2006) 182-193.
  • [9] Z. Liu, X. Lin, J. Y. Lee, W. Zhang, M. Han, L. M. Gan, Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane Fuel Cells, Langmuir 18 (2002) 4054-4060.
  • [10] H. Y. Du, C. H. Wang, H. C. Hsu, S. T. Chang, U. S. Chen, S. C. Yen, L. C. Chen, H. C. Shih, K.H. Chen, Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation, Diamond and Related Materials 17 (2008) 535-541.
  • [11] W. Li, C. Liang, J. Qiu, W. Zhou, A. Zhou, Z. Wei, G. Sun, Q. Xin, Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells, The Journal of Physical Chemistry B 107 (2003) 6292-6299.
  • [12] S. Hrapovic, Y. Liu, K. Male, J. H. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes, Analytical Chemistry 76/4 (2004) 1083-1088.
  • [13] X. Chu, D. Due, G. Shen, R. Yu, Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode, Talanta 71 (2007) 2040-2047.
  • [14] N. Sinha, J. Ma, J. T. W. Yeow, Carbon nanotube-based sensors, Journal of Nanoscience and Nanotechnology 6 (2006) 573-590.
  • [15] C. Hu, S. Hu, Carbon Nanotube-Based Electrochemical Sensors: Principles and Applications in Biomedical Systems, Journal of Sensors 2009 (2009) 1-40.
  • [16] A. Star, V. Joshi, S. Skarupo, D. Thomas, J. C. P. Gabriel, Gas sensor array based on metal-decorated carbon nanotubes, The Journal of Physical Chemistry B 110/42 (2006) 21014-21020.
  • [17] X. H. Kang, Z. B. Mai, X. Y. Zou, P. X. Cai, J. Y. Mo, Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol-gel chitosan/silica hybrid, Talanta 74 (2008) 879-886.
  • [18] J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors, Journal of the American Chemical Society 125/9 (2003) 2408-2409.
  • [19] X. Peng, J. Chen, J. A. Misewich, S. S. Wong, Carbon nanotube-nanocrystal heterostructures, Chemical Society Reviews 38/4 (2009) 1076-1098.
  • [20] J. Chen, B. Lim, E. P. Lee, Y. Xia, Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications, Nano Today 4/1 (2009) 81-95.
  • [21] D. Wen, X. Zou, Y. Liu, L. Shang, S. Dong, Nanocomposite based on depositing platinum nanostructure onto carbon nanotubes through a one-pot, facile synthesis method for amperometric sensing, Talanta 79/5 (2009) 1233-1237.
  • [22] L. H. Li, W. D. Zhang, Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing, Microchimica Acta 163/3 (2008) 305-311.
  • [23] P. Chen, H. B. Zhang, G. D. Lin, Q. Hong, K. R. Tsai, Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni/MgO catalyst, Carbon 35/10-11 (1997) 1495-1501.
  • [24] J. P. Pinheiro, M. C. Schouler, P. Gadelle, Nanotubes and nanofilaments from carbon monoxide disproportionation over Co/MgO catalysts: I. Growth versus catalyst state, Carbon 41/15 (2003) 2949-2959.
  • [25] J. Xie, S. Wang, L. Aryasomayajula, V. K. Varadan, Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing, Nanotechnology 18/6 (2007) 065503.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0022-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.