PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methodology of high-speed steels design using the artificial intelligence tools

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main goal of the research carried out was developing the design methodology for the new high-speed steels with the required properties, including hardness and fracture toughness, as the main properties guaranteeing the high durability and quality of tools made from them. It was decided that hardness and fracture toughness KIc are the criteria used during the high-speed steels design. Design/methodology/approach: In case of hardness, the statistical and neural network models were developed making computation possible of the high-speed steel hardness based solely on the steel chemical composition and its heat treatment parameters, i.e., austenitizing- and tempering temperatures. In this case results of own work on the effect of alloy elements on the secondary hardness effect were used, as well as data contained in catalogues and pertinent standards regarding the high-speed steels. In the second case - high-speed steels fracture toughness, the neural network model was developed, making it possible to compute the KIc factor based on the steel chemical composition and its heat treatment parameters. The developed material models were used for designing the chemical compositions if the new high-speed steel, demonstrating the desired properties, i.e., hardness and fracture toughness. Methodology was developed to this end, employing the evolutionary algorithms, multicriteria optimisation of the high-speed steels chemical composition. Findings: Results of the research carried out confirmed the assumption that using the data from catalogues and from standards is possible, which - would supplement the set of data indispensable to develop the assumed model - improving in this way its adequacy and versatility. Practical implications: Solutions presented in the work, based on using the adequate material models may feature an interesting alternative in designing of the new materials with the required properties. The practical aspect has to be noted, resulting form the developed models, which may successfully replace the above mentioned technological investigations, consisting in one time selection of the chemical composition and heat treatment parameters and experimental verification of the newly developed materials to check of its properties meet the requirements. Originality/value: The presented approach to new materials design, being the new materials design philosophy, assumes the maximum possible limitation of carrying out the indispensable experiments, to take advantage of the existing experimental knowledge resources in the form of databases and most effective computer science tools, including neural networks and evolutionary algorithms. It should be indicated that the materials science knowledge, pertaining oftentimes to the multi-aspect classic problems and described, or - rather - saved in the existing, broadly speaking, databases, features the invaluable source of information which may be used for discovery of the unknown so far relationships describing the material structure - properties relations.
Rocznik
Strony
115--160
Opis fizyczny
Bibliogr. 216 poz., rys., tabl.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, wojciech.sitek@polsl.pl
Bibliografia
  • [1] J. Adamczyk, L. A. Dobrzański, E. Hajduczek, M. Przybył, S. Griner, Influence of heat treatment and chemical heat treatment on structure and properties of SW3S2 high speed steel, Scientific Bulletins of Silesian University of Technology, Mechanics 70 (1980) 19 (in Polish).
  • [2] J. Adamczyk, L. A. Dobrzański, E. Hajduczek, Investigations of secondary hardness effect in W-Mo-V high speed steels, Proceedings of 5th Conference “Electron Microscopy”, Warsaw – Jadwisin, 1978, 247-252 (in Polish).
  • [3] J. Adamczyk, M. Przybył, Influence of nitriding process on high speed steels structure and properties, Scientific Bulletins of Institute for Ferrous Metallurgy 33/34 (1978) 109-114 (in Polish).
  • [4] M. Adamiak, Structure and properties of TiN i Ti(CN) coatings deposited by PVD processes on high speed steels substrates, PhD thesis, Main Library of Silesian University of Technology, Gliwice, 1997 (in Polish).
  • [5] M. F. Ashby, K. Johnson, Materials and design: the art and science of materials selection in product design, Butterworth Heinemann, Oxford-Amsterdam-Boston, 2002.
  • [6] M. F. Ashby, Materials Selection in Mechanical Design, Pergamon Press, Oxford-New York-Seoul-Tokyo, 1992.
  • [7] P. Bała, The kinetics of phase transformations during tempering and its influence on the mechanical properties, PhD thesis, Main Library of AGH University of Science and Technology, Cracow, 2007 (in Polish).
  • [8] W. Bochnowski, H. Leitner, Ł. Major, R. Ebner, B. Major, Primary and secondary carbides in high-speed steels after conventional heat treatment and laser modification, Materials Chemistry and Physics 81 (2003) 503-506.
  • [9] H. Brandis, E. Haberling, R. Ortmann, H. H. Weigand, Einfluss des Siliciumgehaltes auf Gefügeausbildung und Eigenschaften eines Schnellarbeitsstahles mit rd. 6% W, 5% Mo, 4% Cr, 2% V und 1% bzw. 1.AZ- 5% C, TEW Tech. Ber. 3 (1977) 81-99 (in German).
  • [10] H. Brandis, E. Haberling, R. Ortmann, H. H. Weigand, Influence of silicon content on structure of high-speed steel of grade S6-5-2, Archiv für das Eisenhüttenwesen 48 (1977) 437-442 (in German).
  • [11] H. Brandis, E. Haberling, R. Ortmann, S6-5-2Si (Thyrapid 3345) - ein optimierter Schnellarbeitsstahl, TEW Tech. Ber. 1 (1975) 106-109 (in German).
  • [12] H. Brandis, E. Haberling, H. H. Weigand, Metallurgical aspects of carbides in high speed steels, TEW Tech. Ber. 7 (1981) 115-122 (in German).
  • [13] K. Bungardt, E. Haberling, A. Rose, H.H. Weigand, Effect of carbon content on the structural composition and properties of a high-speed steel (6W-5Mo-4Cr-2%V), DEW Techn. Ber. 12/2 (1972) 111-133 (in German).
  • [14] K. Bungardt, H. H. Weigand, E. Haberling, Effect of increased carbon contents on some properties of high-speed tool steels containing approximately 2% vanadium, Stahl und Eisen 89 (1969) 420-426 (in German).
  • [15] T. Burakowski, T. Wierzchoń, Metal Surface Engineering, WNT, Warsaw, 1995 (in Polish).
  • [16] T. Burczyński, W. Kuś, W. Beluch, A. John, A. Poteralski, M. Szczepanik, The use of evolutionary algorithms of MSC/Nastran and MSC/Marc software in tasks of optimum projecting, Bulletins of Military University of Technology WAT 53/6 (2004) 5-22 (in Polish).
  • [17] T. Cescon, R. Popaleo, Study of the as-cast structures of tool steels with niobium, Met. ABM 38 (1982) 221-224.
  • [18] D. Chatterjee, G. Sutradhar, B. Oraon, Fuzzy rule-based prediction of hardness for sintered HSS components, Journal of Materials Processing Technology 200 (2008) 212-220.
  • [19] W. Cholewa, W. Moczulski, K. Ciupke, The development of methodology of acquisition of knowledge in projecting and the exploitation of machinery, Machine Engineering 10/1-2 (2005) 97-106 (in Polish).
  • [20] G. C. Coelho, J. A. Golczewski, H. F. Fischmeister, Thermodynamic Calculations for Nb-Containing High-Speed Steels and White-Cast-Iron Alloys, Metallurgical and Materials Transactions A 34 (2003) 1749-1750.
  • [21] J. Cwajna, F. Grosman, A. Maciejny, The new economical non-ledeburic tool alloys, Bulletin of Center for Technical Progress 64 (1986) 159-168 (in Polish).
  • [22] J. Cwajna, A. Olszówka-Myalska, J. Richter, Structure and properties of new tool materials, Proceedings of the 13th Scientific Conference "AMT'92", Warszawa – Popowo, 1992, 184 (in Polish).
  • [23] J. Cwajna, J. Richter, J. Szala, Economical non-ledeburitic tool alloys - alloying philosophy, structure and properties, Journal of Materials Processing Technology 133 (2003) 39-43.
  • [24] J. Cwajna, Tool alloys quantitative structure description and its application, Scientific Bulletins of Silesian University of Technology, Metallurgy 39 (1991) (in Polish).
  • [25] F. J. da Silva, S. D. Franco, A. R. Machado, E. O. Ezugwu, A. M. Souza Jr., Performance of cryogenically treated HSS tools, Wear 261 (2006) 674-685.
  • [26] M. H. C. de Souza, J. G. S. Falleiros, C. A. Barbosa, F. Y. Mori, Uso do nióbio como substituto do vanádio em aços rápidos, Met. ABM. 38 (1982) 19-25.
  • [27] Y.-M. Deng, K. L. Edwards, The role of materials identification and selection in engineering design, Materials and Design 28 (2007) 131-139.
  • [28] P. Dingu, S. Zhou, F. Pan, J. Liu, Ecotechnology for high-speed tool steels, Materials and Design 22 (2001) 137-142.
  • [29] L. A. Dobrzański, Influence of thermo and thermo-mechanical treatment on structure and properties of SW12C high speed steel, PhD thesis, Main Library of Silesian University of Technology, Gliwice, 1977 (in Polish).
  • [30] L. A. Dobrzański (ed.), W. Sitek, E. Hajduczek, J. Trzaska, K. Gołombek, Principles of engineering materials selection, Silesian University of Technology, Gliwice, 2000 (in Polish).
  • [31] L. A. Dobrzański, Fundamentals of materials science and engineering, WNT, Warsaw, (2002) (in Polish).
  • [32] L. A. Dobrzański, M. Adamiak, G. E. D’Errico, Relationship between erosion resistance and the phase and chemical composition of PVD coatings deposited onto high-speed steel, Journal of Materials Processing Technology 92-93 (1999) 184-189.
  • [33] L. A. Dobrzański, M. Adamiak, Structure and properties of the TiN and Ti(C,N) coatings deposited in the PVD process on high-speed steels, Journal of Materials Processing Technology 133/1-2 (2003) 50-62.
  • [34] L. A. Dobrzański, M. Adamiak, The Structure and Properties of PVD Coated PM High-Speed Steels, Key Engineering Materials 189-191 (2001) 381-386.
  • [35] L. A. Dobrzański, M. Adamiak, TiN and Ti(C,N) coatings on high-speed steels with Ti addition, their structure and properties, Praktischen Metallographie Sonderbande 30 (1999) 569-574.
  • [36] L. A. Dobrzański, M. Adamiak, PVD processes application for TiN and Ti(C,N) coatings deposition on high speed steels, Proceedings of the 1st Scentific Conference on Material Science - Foundry - Quality MOJ'97, Cracow, Material Science 1 (1997) 331-340 (in Polish).
  • [37] L. A. Dobrzański, K. Gołombek, J. Mikuła, D. Pakuła, Improvement of tool materials by deposition of gradient and multilayers coatings, Journal of Achievements in Materials and Manufacturing Engineering 19/2 (2006) 86-91.
  • [38] L. A. Dobrzański, K. Gołombek, J. Mikuła, D. Pakuła, Multilayer and gradient PVD coatings on the sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 170-190.
  • [39] L. A. Dobrzański, E. Hajduczek, J. Marciniak, R. Nowosielski, Metals science and heat treatment of tools materials, WNT, Warsaw, 1990.
  • [40] L. A. Dobrzański, W. Kasprzak, The influence of 5% cobalt addition on structure and working properties of the 9-2-2-5, 11-2-2-5 and 11-0-2-5 high-speed steels, Journal of Materials Processing Technology 109/1-2 (2001) 52-64.
  • [41] L. A. Dobrzański, W. Kasprzak, A. Zarychta, M. Ligarski, J. Mazurkiewicz, Structure and properties of W-Mo-V-Co 11-0-2-5 type and W-Mo-V 11-0-2 type high-speed steels, Journal of Materials Processing Technology 64/1-3 (1997) 93-99.
  • [42] L. A. Dobrzański, A. Kloc-Ptaszna, G. Matula, J. M. Torralba, Structure and properties of a gradient tool materials manufactured using the conventional powder metallurgy method, Materials Science Forum (2009) (accepted for printing).
  • [43] L. A. Dobrzański, J. Kwarciak, The use of DTA for determination of the equilibrium diagram for 9-0-2+Si high-speed steel, Thermochimica Acta 93 (1985) 673-676.
  • [44] L. A. Dobrzański, W. Kwaśny, Z. Brytan, R. Shishkov, B. Tomov, Structure and properties of the Ti+Ti(C,N) coatings obtained in the PVD process on sintered high speed steel, Journal of Materials Processing Technology 157-158 (2004) 312-316.
  • [45] L. A. Dobrzański, M. Ligarski, Role of Ti in the W-Mo-V high-speed steels, Journal of Materials Processing Technology, 64/1-3 (1997) 101-116.
  • [46] L. A. Dobrzański, J. Madejski, W. Malina, W. Sitek, The prototype of an expert system for the selection of high-speed steels for cutting tools, Journal of Materials Processing Technology 56/1-4 (1996) 873-881.
  • [47] L. A. Dobrzański, G. Matula, A. Várez, B. Levenfeld, J.M. Torralba, Structure and mechanical properties of HSS HS6-5-2- and HS12-1-5-5-type steel produced by modified powder injection moulding process, Journal of Materials Processing Technology 157-158 (2004) 658-668.
  • [48] L. A. Dobrzański, G. Matula, A. Várez, B. Levenfeld, J. M. Torralba, Fabrication methods and heat treatment conditions effect on tribological properties of high speed steels, Journal of Materials Processing Technology 157-158 (2004) 324-330.
  • [49] L. A. Dobrzański, Significance of materials science for the future development of sciences, Journal of Materials Processing Technology 175/1-3 (2006) 133-148.
  • [50] L. A. Dobrzański, W. Sitek, Application of a neural network in modelling of hardenability of constructional steels, Journal of Materials Processing Technology 78/1-3 (1998) 59-66.
  • [51] L. A. Dobrzański, W. Sitek, Comparison of hardenability calculation methods of the heat-treatable constructional steels, Journal of Materials Processing Technology 64/1-3 (1997) 117-126.
  • [52] L. A. Dobrzański, W. Sitek, Designing of the chemical composition of constructional alloy steels, Journal of Materials Processing Technology 89-90 (1999) 467-472.
  • [53] L. A. Dobrzański, W. Sitek, M. Krupiński, J. Dobrzański, Computer aided method for evaluation of failure class of materials working in creep conditions, Journal of Materials Processing Technology 157-158 (2004) 102-106.
  • [54] L. A. Dobrzański, W. Sitek, The modelling of hardenability using neural networks, Journal of Materials Processing Technology 92-93 (1999) 8-14.
  • [55] L. A. Dobrzański, W. Sitek, J. Zacłona, The modelling of high-speed steels’ properties using neural networks, Journal of Materials Processing Technology 157-158 (2004) 245-249.
  • [56] L. A. Dobrzański, Structure and properties of high-speed steels with wear resistant cases or coatings, Journal of Materials Processing Technology 109/1-2 (2001) 44-51.
  • [57] L. A. Dobrzański, The structure and properties of the W-V high-speed steels with increased content of silicon, Journal of Materials Processing Technology 56/1-4 (1996) 933-944.
  • [58] L. A. Dobrzański, J. Trzaska, Application of neural networks to forecasting the CCT diagram, Journal of Materials Processing Technology 157-158 (2004) 107-113.
  • [59] L. A. Dobrzański, J. Trzaska, W. Sitek, The importance of artificial intelligence in designing new materials, Proceedings of the International Advanced Technology Congress, ATCi’2005, Putrajaya, Malaysja, 2005 (CD-ROM).
  • [60] L. A. Dobrzański, J. Trzaska, Application of neural network for the prediction of continous cooling transformation diagrams, Computational Materials Science 30/3-4 (2004) 251-259.
  • [61] L. A. Dobrzański, L. Wosińska, K. Gołombek, J. Mikuła, Structure of multicomponent and gradient PVD coatings deposited on sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 99-102.
  • [62] L. A. Dobrzański, A. Zarychta, E. Hajduczek, M. Ligarski, Heat treatment of W-Mo-V i W-V high speed steels with Ti addition, Division of Tool Materials and Computer Techniques in Metal Science, Silesian University of Technology, Gliwice, 1997.
  • [63] L. A. Dobrzański, A. Zarychta, M. Ligarski, E. Hajduczek, The role of Nb or Ti as alloying elements in W-Mo-V high speed steels, Division of Tool Materials and Computer Techniques in Metal Science, Silesian University of Technology, Gliwice, 1994.
  • [64] L. A. Dobrzański, A. Zarychta, M. Ligarski, High-speed steels with addition of niobium or titanium, Journal of Materials Processing Technology 63/1-3 (1997) 531-541.
  • [65] L. A. Dobrzański, A. Zarychta, M. Ligarski, Phase transformations during heat treatment of W Mo-V 11-2-2 type high-speed steels with increased contents of Si and Nb or Ti, Journal of Materials Processing Technology 53/1-2 (1995) 109-120.
  • [66] L. A. Dobrzański, A. Zarychta, M. Ligarski, High-speed steels with addition of niobium or titanium, Journal of Materials Processing Technology 63 (1997) 531.
  • [67] L. A. Dobrzański, A. Zarychta, M. Ligarski, Phase transformations during heat treatment of W Mo-V 11-2-2 type high-speed steels with increased contents of Si and Nb or Ti, Journal of Materials Processing Technology 53 (1995) 109-120.
  • [68] L. A. Dobrzański, A. Zarychta, The structure and properties of W-Mo-V high-speed steels with increased contents of Si and Nb after heat treatment, Journal of Materials Processing Technology 77/1-3 (1998) 180-193.
  • [69] L. A. Dobrzański, A. Zarychta, The structure and properties of W-Mo-V high-speed steels with increased contents of Si and Nb after heat treatment, Journal of Materials Processing Technology 77 (1998) 180-193.
  • [70] L. A. Dobrzański, A. Zarychta, Influence of Nb or Ti on secondary hardness efect in W-Mo-V (9-2-2, 11-2-2 and 11-0-2 type) high speed steels with increased Si content, Proceedings of the 5th Scientific Conference “Tool Materials”, Gliwice - Zakopane, 1993, 63-74 (in Polish).
  • [71] L. A. Dobrzański, L. W. Żukowska, J. Mikuła, K. Gołombek, D. Pakuła, M. Pancielejko, Structure and mechanical properties of gradient PVD coatings, Journal of Materials Processing Technology 201/1-3 (2008) 310-314.
  • [72] L. A. Dobrzański, Effects of chemical composition and processing conditions on the structure and properties of high-speed steels, Journal of Materials Processing Technology 48/1-4 (1995) 727-737.
  • [73] L. A. Dobrzański, High temperature thermo-mechanical treatment of 12-0-2+C type high-speed steel, Journal of Materials Processing Technology 38/1-2 (1993) 123.
  • [74] L. A. Dobrzański, Computational materials science as a method of design of contemporary engineering materials and products, proceedings of the 10th Seminary of Research and Education Programmes in Materials Engineering, Myczkowce, 2004, 55-88 (in Polish).
  • [75] L. A. Dobrzański, Melting and crystallization behaviour of W-V-Si high-speed steels, Steel Research 57/7 (1986) 37.
  • [76] L. A. Dobrzański, High speed steels especially for cutting tools, Polish Patent 141988, 1987 (in Polish).
  • [77] L. A. Dobrzański, Si influence on structure and properties of W-V high speed steels, Scientific Bulletins of Silesian University of Technology, Mechanics 96 (1989) (in Polish).
  • [78] W. Duch, Where intelligence computing is going? [in:] -Evolution or revolution. Modern informatics techniques, R. Cierniak. (ed.), Czestochowa, 2003, 19-40 (in Polish).
  • [79] D. Dumont, A. Deschamps, Y. Brechet, A model for predicting fracture mode and toughness in 7000 series aluminium alloys, Acta Materialia 52 (2004) 2529-2540.
  • [80] S. Durante, M. Comogli, K. Ridgway, F. Natale, D. Franchi, Integrated development of high performance tools for efficient machining of difficult to cut materials in automotive and aerospace applications, Proceedings of the 7th International Tooling Conference “Tooling materials and their applications form research to market”, Torino, Italy, vol. 1, 2006, 87-94.
  • [81] B. Edenhofer, Anwendungen und Vorteile von Nitrierbehandlungen außerhalb des gewöhnlichen Temperaturbereiches. Teil 1: Behandlungen bei niedrigen Temperaturen (unterhalb von 500 °C), Härterei-Technische Mitteilungen 30/1 (1975) 21-24.
  • [82] B. Edenhofer, Anwendungen und Vorteile von Nitrierbehandlungen außerhalb des gewöhnlichen Temperaturbereiches. Teil II: Behandlungen bei hohen Temperaturen (oberhalb von 580 °C), Härterei-Technische Mitteilungen 30/4 (1975) 204-208.
  • [83] A. F. Edneral, V. J. Kirienko, V. F. Filimonov, Effect of Titanium and Niobium on the properties of Tungsten-free high speed steel, Russian Metallurgy 4 (1987) 92-96.
  • [84] K. L. Edwards, Linking materials and design: an assessment of purpose and progress, Materials Design 23 (2002) 255-264.
  • [85] K. Eriksson, Fracture toughness of hard high-speed steels, tool steels and white cast irons, Scandinavian Journal of Metallurgy 2 (1973) 197-203.
  • [86] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, From Data Mining to Knowledge Discovery in Databases, AI Magazine 17/3 (1996) 37-54.
  • [87] V. Firouzdor, E. Nejati, F. Khomamizadeh, Effect of deep cryogenic treatment on wear resistance and tool life of M2 HSS drill, Journal of Materials Processing Technology 206 (2008) 467-472.
  • [88] H. F. Fischmeister, S. Karagöz, J. Liem, J. Paul, M. Poech, Quantitative metallography and structure-property relations in high-speed steels, Acta Steoreologica 5/2 (1986) 287-297.
  • [89] H. F. Fischmeister, R. Riedl, S. Karagöz, Solidification of high-speed tool steels, Metallurgical Transaction A 20 (1989) 2133-2148.
  • [90] S. Fouvry, Ph. Kapsa, L. Vincent, B. Wendler, P. Kula, Fretting analysis of modulated TiC/VC multilayers on M2 HSS steels, Materials Science and Engineering 4 (1998) 990-993.
  • [91] H. Fredriksson, M. Nica, The influence of vanadium, silicon and carbon on the eutectic reaction in M2 high-speed steels, Scandinavian Journal of Metallurgy 8 (1979) 243-253.
  • [92] E. J. Galda, R. W. Kraft, The effects of Mo and W on solidification of high-speed steels, Metallurgical Transaction B 5 (1974) 1727-1733.
  • [93] K. Gołombek, Structure and properties of sintered carbides and cermets tools, deposited by wear resistant coatings in PVD process, PhD thesis, Main Library of Silesian University of Technology, Gliwice, 2001 (in Polish).
  • [94] E. Gordo, A. Rubio, F. J. Velasco, J. M. Torralba, Microstructural development of high speed steels metal matrix composites, Journal of Materials Science Letters 19 (2000) 2011-2014.
  • [95] F. Grosman, J. Cwajna, E. Pustówka, J. Onderka, Influence chances of rotary forging process on structure and geometrical characteristics, bars from tool steels, Bulletins of Center for Technical Progress 64 (1986) 133-143 (in Polish).
  • [96] F. Grosman, E. Pustówka, Gap and run deformation in rotary forging process, Metallurgist 46/7 (1979) 290-297 (in Polish).
  • [97] F. Grosman, Influence analysis of rotary forging process on product properties, Scientific Bulletins of Silesian University of Technology, Metallurgy 676 (1980).
  • [98] L. Gusel, M. Brezocnik, Modeling of impact toughness of cold formed material by genetic programming, Computational Materials Science 37 (2006) 476-482.
  • [99] E. Haberling, P. Gümpel, Über den Einfluß von Niob auf die Gefügeausbildung und Härteannahme von Schnellarbeitsstählen, TEW Techn. Ber. 6/2 (1980) 127-131.
  • [100] E. Haberling, M. Hoock, Influence of tempering temperature and time on the hardness and residual austenite content of high-speed steels, TEW Tech. Ber. May (1990) 9-15.
  • [101] M. E. Haque, K. V. Sudhakar, ANN back-propagation predict model for fracture toughness in microalloyed steel, International Journal of Fatigue 24 (2002) 1003-1010.
  • [102] F. Heisterkamp, S. R. Keown, Niobium moves into High Speed Tool Steels, Metals and Materials 10 (1978) 35-36.
  • [103] P. Hellman, The Asea-Stora Process a new method for new steels, drastic improvement in tool life, Stora Steel Plant Publisher Kopparberg, Söderfors, Sweden, 1970.
  • [104] G. Herranz, B. Levenfeld, A. Várez, J. M. Torralba, Development of New feedstock formulation based on high density polyethylene for MIM of M2 high-speed steel, Powder Metallurgy 48/2 (2005) 134-138.
  • [105] G. Herranz, R. Nagel, R. Zauner, B. Levenfeld, A. Várez, J. M. Torralba, Influence of Powder Surface Treatment with Stearic Acid on Powder Injection Moulding of M2 HSS Using a HDPE Based Binder, Proceedings of the Powder Metallurgy World Congress PM’2004, 4 (2004) 397-402.
  • [106] D. W. Hetzner, Refining carbide size distributions in M1 high speed steel by processing and alloying, Materials Characterization 46 (2001) 175-182.
  • [107] G. Hoyle, Elektroslag Processes, Applied Science Publisher, 1982.
  • [108] G. Hoyle, High Speed Steels, Butterworth & Co., Ltd, The University Press, Cambridge, 1988.
  • [109] R. Hrubiak, L. George, S.K. Saxena, K. Rajan, A Materials Database for Exploring Material Properties, JOM 1 (2009) 59-62.
  • [110] http://www.erasteel.com/us/produits/hss.php.
  • [111] A. G. Jackson, S. R. LeClair, M. C. Ohmer, W. Ziarko, H. Al-Khamwi, Rough set apllied to materials data, Acta Materialia 44/11 (1996) 4475-4484.
  • [112] A. G. Jackson, Z. Pawlak, S. R. LeClair, Rough set applied to the discovery of materials knowledge, Journal of Alloys and Compounds 279 (1998) 14-21.
  • [113] S. Karagöz, H. Fischmeister, Cutting Performance and Microstructure of High Speed Steels: Contributions of Matrix Strengthening and Undissolved Carbides, Metallurgical and Materials Transactions A 29 (1998) 205-216.
  • [114] W. Kasprzak, Importance of Co in high speed steels with reduced W and Mo, and increased Si concentration, PhD thesis, Main Library of Silesian University of Technology, Gliwice, 1998 (in Polish).
  • [115] S.R. Keown, E. Kudielka, F. Heisterkamp, Replacement of vanadium by niobium in S6-5-2 high-speed tool steels, Metals Technology 2 (1980) 50-57.
  • [116] K. Kiyonaga, [in:] Proceedings of Symposium on “Toward Improved Ductility and Toughness”, Climax Molybdenum Development Company, Kyoto, Japan, 1971, 207-239.
  • [117] A. Kloc, L. A. Dobrzański, G. Matula, J. M. Torralba, Effect of manufacturing methods on structure and properties of the gradient tool materials with the non-alloy steel matrix reinforced with the HS6-5-2 type high-speed steel, Materials Science Forum 539-543 (2007) 2749-2754.
  • [118] A. Kokosza, J. Pacyna, Ewaluation of retained austenite stability in heat treated cold work tool steel, Journal of Materials Processing Technology 162-163 (2005) 327-331.
  • [119] J. Krawiarz, High vanadium tool steels with high wear resistance, Proceedings of 4th Scientific Conference „Tool Materials”, Rydzyna, 103 (1988) 81-89 (in Polish).
  • [120] J. Krawiarz, Non-ledeburitic tool steels with high wear resistance, Polish Patent 162262, 1994 (in Polish).
  • [121] J. Krawiarz, A. Mazur, E. Kaliszewski, R. Woźniak, State of the art of extra abrasive resistant high vanadium non-ledeburitic tool steel since 10 years of their production in Baildon Steel Works, Proceedings of the 14th International Scientific Conference AMT’95, Gliwice-Zakopane, 1995, 214-226.
  • [122] J. Krawiarz, A. Mazur, High-Speed Steel for Precise Casted Tools, Materials Science and Engineering 4 (2001) 477-480.
  • [123] H. Kudielka, Röntgenbeugungsuntersuchungen über den Einfluß von Niob auf Phasenum-wandlungen in Schnellarbeitsstählen, Archiv für das Eisenhüttenwesen 54 (1983) 381-384.
  • [124] P. Kula, D. Jachowicz, TiN arc coatings on the former vacuum nitrided substrates of HSS steels, Materials Science and Engineering 4 (1998) 1002-1006.
  • [125] P. Kula, Vacum thermo-chemical treatment - development prospects, Materials Science and Engineering 5 (1999) 221- 223 (in Polish).
  • [126] A. Kulmburg, F. Korntheuer, Das Umwandlungsverhalten von Schnellarbeitsstählen bei kontinuierlicher Abkühlung unter besonderer Berücksichtigung der Martensitstufe, Härterei-Technische Mitteilungen 31 (1976) 195.
  • [127] E. Kunze, H. Brandis, Einfluss der Gehalte an Karbidbildner auf die Eigensshaften von Schnellarbeitshahlen, DEW Tech. Ber. 4 (1964) 75-79.
  • [128] K. Kuo, Carbide Precipitation, Secondary Hardening and Red Hardness of High Speed Steel, Journal of Iron Steel Institute (Japan) 174 (1953) 223-228.
  • [129] W. Kwaśny, W. Sitek, L. A. Dobrzański, Modelling of properties of the PVD coatings using neural networks, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 163-166.
  • [130] V. Leskovšek, M. Kalin, J. Vižintin, Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS, Vacuum 80 (2006) 507-518.
  • [131] V. Leskovšek, B. Ule, Improved vacuum heat-treatment for fine-blanking tools from high-speed steel M2, Journal of Materials Processing Technology 82 (1998) 89-94.
  • [132] V. Leskovšek, B. Ule, B. Lišcik, Relations between fracture toughness and microstructure of vacuum heat-treated high-speed steel, Journal of Materials Processing Technology 127 (2002) 298-308.
  • [133] B. Levenfeld, A. Várez, L. Castro, J. M. Torralba, Processing of P/M M2 high speed steels by mould casting using thermosetting binders, Journal of Materials Processing Technology 119/1-3 (2001) 1-6.
  • [134] M. Ligarski, Influence of partial V substitution by Ti on phase transformations in W-Mo-V high speed steels, Main Library of Silesian University of Technology, Gliwice, 1996 (in Polish).
  • [135] X. Liujie, X. Jiandong, W. Shizhong, P. Tao, Z. Yongzhen, L. Rui, Artificial neural network prediction of heat-treatment hardness and abrasive wear resistance of High- Vanadium High-Speed Steel (HVHSS), Journal of Materials Science 42 (2007) 2565-2573.
  • [136] X. Liujie, X. Jiandong, W. Shizhong, Z. Yongzhen, L. Rui, Artificial neural network prediction of retained austenite content and impact toughness of high-vanadium high-speed steel (HVHSS), Materials Science and Engineering A 433 (2006) 251-256.
  • [137] L. Y. Ljungberg, K. L. Edwards, Design, materials selection and marketing of successful products, Materials and Design 24 (2003) 519-529.
  • [138] W. F. Lu, Y.-M. Deng, A system modelling methodology for materials and engineering systems design integration, Materials and Design 25 (2004) 459-469.
  • [139] K. Lukaszkowicz, L. A. Dobrzański, M. Staszuk, M. Pancielejko, Comparison of the PVD gradient coatings deposited onto X40CrMoV5-1 and HS6-5-2 tool steel substrate, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 79-82.
  • [140] G. Matula, L. A. Dobrzański, G. Herranz, A. Várez, B. Levenfeld, J. M. Torralba, Structure and properties of HS6-5-2 type HSS manufactured by different P/M methods, Journal of Achievements in Materials and Manufacturing Engineering 22/2 (2007) 71-74.
  • [141] G. Matula, L. A. Dobrzański, A. Várez, B. Levenfeld, J. M. Torralba, Comparison of structure and properties of the HS12-1-5-5 type high-speed steel fabricated using the pressureless forming and PIM methods, Journal of Materials Processing Technology 162-163 (2005) 230-235.
  • [142] G. Matula, K. Gołombek, J. Mikuła, L. A. Dobrzański, Structure of sintered gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2009) 23-28.
  • [143] G. Matula, K. Gołombek, J. Mikuła, L. A. Dobrzański, Structure of sintered gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2009) 23-28.
  • [144] A. Mazur, T. Paluszkiewicz, J. Krawiarz, Continuous Cooling Transformations kinetics (CCT) of super-cooled austenite diagrams for 6-5-2 type steel, Metallurgist 48/8-9 (1981) supplement (in Polish).
  • [145] A. Mazur, T. Paluszkiewicz, J. Krawiarz, Continuous Cooling Transformations kinetics (CCT) of super-cooled austenite diagrams for 6-5-2-5 type steel, Metallurgist 50/2 (1983) supplement (in Polish).
  • [146] A. Mazur, T. Paluszkiewicz, J. Krawiarz, Continuous Cooling Transformations kinetics (CCT) of super-cooled austenite diagrams for 10-4-3-10 steel type, Metallurgist 51/1 (1984) supplement (in Polish).
  • [147] D.L. McDowell, Simulation-assisted materials design for the concurrent design of materials and products, JOM Sept. (2008) 21-25.
  • [148] R. A. Mesquita, C. A. Barbosa, Spray forming high speed steel - properties and processing, Materials Science and Engineering A 383 (2004) 87-95.
  • [149] B. Mills, Recent development in cutting tool materials, Journal of Materials Processing Technology 56 (1996) 16-23.
  • [150] W. Moczulski, Methodology of knowledge acquisition for machinery diagnostics, Scientific Bulletins of Silesian University of Technology, Mechanics 130 (1997) (in Polish).
  • [151] A. Molinari, A. Pellizzari, A. Gialanella, G. Straffelini, K. H. Stiasny, Effect of deep cryogenic treatment on mechanical properties of tool steels, Journal of Materials Processing Technology 118 (2001) 350-355.
  • [152] H. K. Moon, K. B. Lee, H. Kwon, Influences of Co addition and austenitizing temperature on secondary hardening and impact fracture behavior in P/M high speed steels of W-Mo-Cr-V(-Co) system, Materials Science and Engineering A 474 (2008) 328-334.
  • [153] M. Nałęcz, Biocybernetics and biomedical engineering, vol. 6 Neural networks, (eds.) W. Duch, J. Korbicz, L. Rutkowski, R. Tadeusiewicz, EXIT, Warsaw, (2000).
  • [154] G. B. Olson, Computational design of hierarchically structured materials, Science 277 (1997) 1237-1242.
  • [155] G. B. Olson, Designing a new materials world, Science 288 (2000) 993-998.
  • [156] J. Pacyna, Z. Kędzierski, K. Kusiński, Effect of molybdenum on the fracture characteristic of high-speed steel quenched matrix, Steel Research 56/2 (1985) 105-109.
  • [157] J. Pacyna, A. Mazur, Relationship between the grain size and fracture toughness of tool steel, Steel Research 57/11 (1986) 577-585.
  • [158] J. Pacyna, A. Mazur, Application of line-plasticity method of fracture mechanics and static bending test for assessment of high-speed ductility, Mechanic 55 (1982) 403-408.
  • [159] J. Pacyna, Designing of steels chemical composition, Faculty of Metallurgy and Materials Science and Engineering Publisher, AGH University of Science and Technology, Cracow, 1997 (in Polish).
  • [160] J. Pacyna, M. Strach, J. Mruczak, The effect of niobum on fracture toughness of the matrix of quenched High-Speed Steel, Arch. Met. 40/2 (1995) 205-216.
  • [161] J. Pacyna, L. Witek, The effect of carbides on fracture toughness of steels of ferritic matrix, Steel Research 59/2 (1988) 68-74.
  • [162] J. Pacyna, Effect of non-metallic inclusion (NMI) on fracture toughness of tool steels, Steel Research 57/11 (1986) 586-592.
  • [163] J. Pacyna, Retained austenite in the cracking process of steel on the working rolls of the cold sheet rolling mill, Steel Research 63/11 (1992) 500-503.
  • [164] J. Pacyna, The effect of low-temperature coagulation of carbides on fracture toughness of high-speed steels, Steel Research 59/10 (1988) 465-468.
  • [165] J. Pacyna, The effect of retained austenite on the fracture toughness of high-speed steels, Steel Research 58/2 (1987) 87-92.
  • [166] J. Pacyna, Physical metallurgy of to ols steel cracking, Scintific Bulletins AGH University of Science and Technology 1230 (1988) (in Polish).
  • [167] F. Pan, P. Ding, A. Tang, M. Hirohashi, Y. Lu, D. V. Edmonds, Carbides in high-speed steels containing silicon, Metallurgical and Materials Transactions A 35/9 (2004) 2757-2766.
  • [168] F. Pan, P. Ding, S. Zhou, M. Kang, D. V. Edmonds, Effect of silicon additions on the mechanical properties and microstructure of high speed steels, Acta Materialia 45/11 (1997) 4703-4712.
  • [169] F. Pan, M. Hirohashi, Y. Lu, P. Ding, A. Tang, D. V. Edmonds, Carbides in High-Speed Steels Containing Silicon, Metallurgical and Materials Transactions A 35 (2004) 2757-2766.
  • [170] F. Pan, A. T. Tang, J. Chen, et al., Alloying elements in high-speed steels, J. Journal of Iron and Steel Research 6 (1999) 33-38.
  • [171] J. H. Panchal, H.-J. Choi, J. K. Allen, D. L. McDowell, F. Mistree, A systems-based approach for integrated design of materials, products and design process chains, Journal of Computer-Aided Materials Design 14 (2007) 265-293.
  • [172] P. Payson, The Metallurgy of Tool Steels, J. Willey and Sons, New York, 1962.
  • [173] PN EN ISO 12737:2006, Metallic materials- Determination of plane-strain fracture toughness (standard).
  • [174] PN EN ISO 4957:2004, Tool steels (standard).
  • [175] M. Polok-Rubiniec, L. A. Dobrzański, M. Adamiak, Comparison of the PVD coatings, Archives of Materials Science and Engineering 38/2 (2009) 118-125.
  • [176] A. N. Popandopulo, N. A. Pakhomova, Effect of titanium on the structure and properties of cast molybdenum high-speed steel, MTOM 27/4 (1985) 24-26.
  • [177] M. Przybył, Influence of nitriding and boriding conditions on structure and properties wear resistance diffusion layers obtained on selected alloyed tool steels, PhD thesis, Main Library of Silesian University of Technology, Gliwice, 1979 (in Polish).
  • [178] S. Z. Qamar, A. K. Sheikh, A. F. M. Arif, T. Pervez, Regression-based CVN-KIc models for hot work tool steels, Materials Science and Engineering A 430 (2006) 208-215.
  • [179] K. Rajan, Materials informatics, Materials Today Oct (2005) 38-45.
  • [180] J. Richter, J. Cwajna, A. Olszówka-Myalska, Microstructural factors deciding about cutting ability of tools made of nonledeburitic steels 0-5-1-3Ti-2Nb type, Proceedings of the 5th Scientific Conference “Tool Materials”, Gliwice - Zakopane, 1993, 171-177 (in Polish).
  • [181] J. Richter, M. Hetmańczyk, J. Cwajna, Characterization of carbide phase in nonledeburitic high-speed steel containing Ti and Nb, Journal of Materials Processing Technology 53 (1995) 341-348.
  • [182] J. Richter, Tribological evaluation of high-speed steels with a regulated carbide phase, Materials Characterization 50 (2003) 339-347.
  • [183] J. Richter, Structural factors of microabrasion and decohesion of tool alloys with varied dispersed phase, Scientific Bulletins of Silesian University if Technology 1674, 2005 (in Polish).
  • [184] R. Riedl, S. Karagöz, H. Fischmeister, F. Jeglitsch, Developments in high speed tool steels, Steel Research 58 (1987) 339-352.
  • [185] R. Riedl, S. Karagöz, H. Fischmeister, Solidification morphology of primary carbides in niobium-alloyed S 6-5-2 type high-speed steels, Z. Met. 74/4 (1983) 199-205.
  • [186] G. A. Roberts, J. C. Hamaker, A. R. Johnson, Tool Steels, American Society for Metals, Metals Park, 1962.
  • [187] P. Romano, O. Lyckfeldt, N. Candela, F.J. Velasco, Water-based processing of high-speed steel utilising starch consolidation, Journal of Materials Processing Technology 143-144 (2003) 752-757.
  • [188] P. Romano, F. J. Velasco, J. M. Torralba, N. Candela, Processing of M2 powder metallurgy high-speed steel by means of starch consolidation, Materials Science and Engineering A 419 (2006) 1-7.
  • [189] M. Rosso, Ceramic and metal matrix composites: Routes and properties, Journal of Materials Processing Technology 175 (2006) 364-375.
  • [190] M. Rosso, Properties of coatings on sintered iron alloys, Journal of Achievements in Materials and Manufacturing Engineering, 19/2 (2006) 35-42.
  • [191] M. Rosso, The excellence of PM tool steels, their modern competitiveness, reliabilty and innovation, Proceedings of the 7th Tooling Conference, Torino, Italy, 2006, 1, 389-400.
  • [192] M. Rosso, D. Ugues, M. Actis Grande, The challenge of PM tool steels for the innovation, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 175-178.
  • [193] D. Rubeša, B. Smoljan, R. Danzer, Main features of designing with brittle materials, Journal of Materials Engineering and Performance 12/2 (2003) 220-228.
  • [194] E. M. Ruiz-Navas, R. Garcia, E. Gordo, F. J. Velasco, Development and characterisation of high-speed steel matrix composites gradient materials, Journal of Materials Processing Technology 143-144 (2003) 769-775.
  • [195] R. Schlatter, J. Stepanic, Silicon additions improve high-speed steels, Metal Progress 109/6 (1976) 56-59.
  • [196] W. Shizhong, Z. Jinhua, X. Liujie, Effect of retained austenite on performance of high vanadium high speed steel, Trans Mater Heat Treat 26/1 (2005) 44-47.
  • [197] W. Shizhong, Z. Jinhua, X. Liujie, Effects of carbon on microstructures and properties of high vanadium high speed steel, Materials and Design 27/1 (2006) 58-63.
  • [198] W. Sitek, L. A. Dobrzański, Application of genetic methods in materials’ design, Journal of Materials Processing Technology 164-165 (2005) 1607-1611.
  • [199] W. Sitek, Employment of rough data for modelling of materials properties, Journal of Achievements in Materials and Manufacturing Engineering 21/2 (2007) 65-68.
  • [200] W. Sitek, J. Trzaska, L. A. Dobrzański, An artificial intelligence approach in designing new materials, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 277-280.
  • [201] W. Sitek, J. Trzaska, L. A. Dobrzański, Evaluation of chemical composition effect on materials properties using AI methods, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 379-382.
  • [202] B. Smoljan, Computer simulation of mechanical properties, stresses and strains of quenched steel specimen, Journal of Achievements in Materials and Manufacturing Engineering 19/2 (2006) 81-85.
  • [203] B. Smoljan, Numerical Simulation of Steel Quenching, Journal of Materials Engineering and Performance 11/1 (2002) 75-79.
  • [204] B. Smoljan, N. Tomašic, D. Iljkic, I. Felde, T. Reti, Application of JM®-TEST in 3D simulation of quenching, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 281-284.
  • [205] B. Šuštaršic, L. Kosec, M. Jenko, V. Leskovšek, Vacuum sintering of water-atomised HSS powders with MoS2 additions, Vacuum 61 (2001) 471-477.
  • [206] B. Šuštaršic, L. Kosec, M. Kosec, B. Podgornik, S. Dolinšek, The influence of MoS2 additions on the densification of water-atomized HSS powders, Journal of Materials Processing Technology 173 (2006) 291-300.
  • [207] A. Śliwa, L. A. Dobrzański, W. Kwaśny, W. Sitek, Finite Element Method application for modeling of PVD coatings properties, Journal of Achievements in Materials and Manufacturing Engineering 27/2 (2008) 171-174.
  • [208] J. Trzaska, L. A. Dobrzański, Application of neural networks for designing the chemical composition of steel with the assumed hardness after cooling from the austenitising temperature, Journal of Materials Processing Technology 164-165 (2005) 1637-1643.
  • [209] J. Trzaska, L. A. Dobrzański, Modelling of CCT diagrams for engineering and constructional steels, Journal of Materials Processing Technology 192-193 (2007) 504-510.
  • [210] J. Trzaska, W. Sitek, L. A. Dobrzański, Application of neural networks for selection of steel grade with required hardenability, International Journal of Computational Materials Science and Surface Engineering 1/3 (2007) 366-382.
  • [211] A. Várez, B. Levenfeld, J. M. Torralba, G. Matula, L. A. Dobrzański, Sintering in different atmospheres of T15 and M2 high speed steels produced by modified metal injection moulding process, Materials Science and Engineering A 366/2 (2004) 318-324.
  • [212] A. Várez, J. Portuondo, B. Levenfeld, J. M. Torralba, Processing of P/M T15 high speed steels by mould casting using thermosetting binders, Materials Chemistry and Physics 67 (2001) 43-48.
  • [213] E. Vyshkovski, V. Panasjuk, New sparingly alloyed high-speed steel with elevated content of silicon, Metalloved. Term. Obrab. Met., MTOM, 9 (1978) 30-33.
  • [214] N.A. Waterman, M.F. Ashby, The Materials Selector, vol. 1-3, Chapman & Hall, London-Weinheim-New York-Tokyo-Melbourne-Madras, 1997.
  • [215] B. Wendler, Structural characteristics and mechanical, tribological and service properties of modulated coatings TiC/VC and TiCN/VCN type on high speed steels, Materials Science and Engineering 5 (1999) 506 (in Polish).
  • [216] A. Zarychta, Nb influence on precipitation processes in W-Mo-V high speed steels with increased Si concentration, PhD thesis, Main Library of Silesian University of Technology, Gliwice, 1995 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0022-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.