PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and properties of dynamically compressed copper Cu99.99

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main object of this study is to establish the influence of dynamic compression on the possibility of microstructure refinement in polycrystalline copper Cu99.99. Design/methodology/approach: Polycrystalline copper Cu99.99 was dynamically compressed on a falling - weight - type impact machine with strain rate ranging from 1.75×102 to 2.7×102 s-1. After deformation, the samples were tested for microhardness and their microstructure was examined by means both optical and electron microscopy. Additionally, the width of microbands observed in the microstructure was statistically evaluate by using mean chord method. The misorientation of selected microstructural elements was determined using proprietary KILIN software. Findings: It was found that to produce materials with nanometric features is not only possible by exertion of severe plastic deformation methods (SPD) but also by deformation with moderate strains and high strain rates. The demonstrated data show, that in some range the amount of deformation and strain rate can be interchangeable parameters causing similar structural effects.n. Practical implications: The results may be utilized for determination of a relation between microstructure and properties of the copper in the process of dynamic compression. Originality/value: The results contribute to evaluation properties of the polycrystalline copper in the light of achievement of fine – grained microstructure. The obtained results indicated that dynamic compression with high strain rate can be an effective method for microstructure refinement, comparable with SPD methods
Rocznik
Strony
35--42
Opis fizyczny
Bibliogr. 26 poz., rys., tabl.
Twórcy
autor
  • Faculty of Non-Ferrous Metals, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland, bleszcz@agh.edu.pl
Bibliografia
  • [1] J. P. Stobrawa, Z. M. Rdzawski, Characterisation of nanostructured copper - WC materials, Journal of Achievements in Materials and Manufacturing Engineering 32/2 (2009) 171 - 178.
  • [2] A. Bhattacharyya, D. Rittel, G. Ravichandran, Effect of strain rate on deformation texture in OFHC copper, Acta Materialia 52 (2005) 657 - 661.
  • [3] S. Rusz, K. Malanik, J. Dutkiewicz, L. Cizek, I. Skotnicowa, J. Hluchnik, Influence of change of direction of deformation at ECAP technology on achieved UFG in AlMn1Cu alloy, Journal of Achievements in Materials and Manufacturing Engineering 35/1 (2009) 21 - 28.
  • [4] B. Leszczyńska - Madej, M. Richert, The effect of strain rate on the evolution of microstructure in aluminium alloys, Journal of Microscopy 237 (2010) 399 - 403.
  • [5] R. Z. Valiev, Y. Estrin, Z. Horita, Producing bulk ultrafine grained materials by severe plastic deformation, Journal of Materials 58/4 (2008) 33 - 39.
  • [6] M. Richert, Nanomaterials produced by methods of severe plastic deformation (SPD), Archives of Materials Sciences 26/4 (2005) 235 - 261.
  • [7] J. Kuśnierz, Nanomaterials manufactured by intensive plastic deformation, Archives of Mechanical Technology and automation 27/1 (2007) 131 - 142.
  • [8] J. Kuśnierz, M. H. Mathon, Jan Dutkiewicz, T. Baudin, Z. Jasieński, R. Penelle, Microstructure and texture of ECAP Processed AlCu4SiMn and AlCu5AgMgZr Alloys, Archives of Metallurgy and Materials 50 (2005) 367-377.
  • [9] J. Kuśnierz, J. Bogucka, Accumulative Roll Bonding (ARB) of Al99.8%, Archives of Metallurgy and Materials 40 (2005) 219 - 230.
  • [10] R. Z. Valiev, R. K. Ismagaliev, I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress In Materials Science 45 (2000) 103 – 189.
  • [11] J. Kuśnierz, Microstructure and texture evolving under Equal-Channel Angular (ECA) processing, Archives of Metallurgy 46 (2001) 375-382.
  • [12] G. H. Zahid, Y. Huang, P. B. Prangnell, Microstructure and texture evolution during annealing a cryogenic-SPD processed Al-alloy with a nanoscale lamellar HAGB grain structure, Acta Materialia 57 (2009) 3509 - 3521.
  • [13] M. Zhou, A. J. Rosakis, G. Ravichandran, Dynamically propagating shear bands in impact loaded prenotched plates - I experimental investigations of temperature signatures and propagation speed, Journal of the Mechanic and Physic of Solids 44/6 (1996) 981 - 1006.
  • [14] G. Gioia, M. Ortiz, The two-dimensional structure of dynamic boundary layers and shear bands in thermoviscoplastic solids, Journal of the Mechanics and Physics in Solids 44 (1996) 251–291.
  • [15] P. B. Prangnell, J. R. Bowen, A. Gholina, The formation of submicron and nanocrystalline grain structures by severe deformation, Proceedings Of the 22nd Riso International Symposium on Mat. Science, “Science of Modeling” Riso, Denmark, 2000, 105 - 122.
  • [16] R. Z. Valiev, Developing SPD methods for processing bulk nanostructured materials with enhanced properties, Metals and Materials 7/5 (2001) 413 - 420.
  • [17] Y. Xu, J. Zhang, Y. Bai, M. A. Meyers, Shear localization in dynamic deformation: Microstructural evolution, Metallurgical and Materials Transactions A 39A (2008) 811 - 843.
  • [18] A. Mishra, B. K. Kad, F. Gregori, M.A. Meyers, Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis, Acta Materiallia 55 (2007) 13 - 28.
  • [19] O. V. Mishin, R. Birringer, R. Z. Valiev, G. Gottstein, Grain boundary distribution and texture of ultrafine - grained copper produced by severe deformation, Scripta Materialia 35 (1996) 873 - 878.
  • [20] M. Richert, K. J. Kurzydłowski, Nonocrystalline copper obtained by exerting unconventional large plastic deformations, Archives of Materials Science 24/4 (2003) 561 - 570.
  • [21] B. Leszczyńska, The influence of the high strain rate in metallic materials to produce nanometric size structure elements, Doctoral thesis, Cracow 2007.
  • [22] J. R. Klepaczko, Constitutive modeling in dynamic plasticity based on physical state variables - a review Journal de physique 49/c3 (1988) 553 - 560.
  • [23] M. A. Meyers, U. R. Andrade, A. H. Chokshi, The effect of grain size on the high strain, high strain rate behavior of copper, Metallurgical and Materials Transactions A 26 A (1995) 2881 - 2893.
  • [24] F. S. Follansbee, U. F. Kocks, A Constitutive Description of the Deformation of Copper Based on the Use of Mechanical Threshold Stress as an Internal State Variable, Acta Metallurgica 36 (1988) 81 - 93.
  • [25] W. Tong, R. J. Clifton, S. Huang, Pressure-shear impact investigation of strain rate history effects in oxygen-free high-conductivity copper, Journal of the Mechanics and Physics of Solids 40 (1992) 1251 - 1294.
  • [26] Y. Tirupataiah, G. Sundararajan, The strain rate sensitivity of flow stress and strain-hardening rate in metallic materials, Materials Science and Engineering A189 (1994) 117-127.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0022-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.