PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphological features of retained austenite in thermo-mechanically processed C-Mn-Si-Al-Nb-Ti multiphase steel

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to determine the influence of isothermal bainitic transformation temperature on morphological features and a fraction of retained austenite in a new-developed thermo-mechanically processed C-Mn-Si-Al-Nb-Ti multiphase steel. Design/methodology/approach: The thermo-mechanical processing was realized in a multi-stage compression test by the use of the Gleeble thermomechanical simulator. The steel was isothermally held for 600 s in a bainitic transformation temperature range of 250 to 500°C. A fraction and stereological parameters of retained austenite were determined by a computer image analyser using an optical microscope. The details of the retained austenite morphology were revealed in a scanning electron microscope and using EBSD technique. Findings: The maximum fraction of retained austenite (above 14%) was obtained for the temperatures of isothermal bainitic transformation from 400 to 450°C. Below 350°C, the largest grains of retained austenite located in a ferritic matrix transform to martensite and its fraction estimated by the use of computer image analysis is too high compared to X-ray investigations. Blocky, irregular grains located in a ferritic matrix are a main structural constituent of retained austenite in a temperature range up to 350°C. Increasing the isothermal holding temperature to a range of 400-450°C results in increasing a fraction of fine blocky and layer regions of the ă phase. Research limitations/implications: To describe in detail morphological features of retained austenite in fine-grained multiphase structures, a combination of different methods characterized by various resolution is necessary. Practical implications: The revealed morphological features of retained austenite are of great importance for mechanical stability of this phase during cold straining, affecting mechanical properties of advanced TRIP-assisted steels. Originality/value: Combined colour etching, scanning electron microscopy and EBSD (Electron Backscattered Diffraction) methods were applied to characterize retained austenite in a modern group of thermomechanically processed TRIP steels with Nb and Ti microadditions.
Rocznik
Strony
7--18
Opis fizyczny
Bibliogr. 29 poz., rys., tabl.
Twórcy
autor
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, adam.grajcar@polsl.pl
Bibliografia
  • [1] A. K. Lis, B. Gajda, Modelling of the DP and TRIP microstructure in the CMnAlSi automotive steel, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 127-134.
  • [2] R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry, Archives of Civil and Mechanical Engineering 8/2 (2008) 103-117.
  • [3] B. Gajda, A. K. Lis, Intercritical annealing with isothermal holding of TRIP CMnAlSi steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 439-442.
  • [4] H. B. Ryu, J. G. Speer, J. P. Wise, Effect of thermomechanical processing on the retained austenite content in a Si-Mn Transformation-Induced-Plasticity steel, Metallurgical and Materials Transactions A 33A (2002) 2811-2816.
  • [5] I. B. Timokhina, P. D. Hodgson, E. V. Pereloma, Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation–induced–plasticity steel, Metallurgical and Materials Transactions A 34A (2003) 1599-1609.
  • [6] A. Grajcar, Hot-working in the γ+α region of TRIP-aided microalloyed steel, Archives of Materials Science and Engineering 28 (2007) 743-750.
  • [7] A. Grajcar, Determination of the stability of retained austenite in TRIP-aided bainitic steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 111-114.
  • [8] J. Adamczyk, A. Grajcar, Structure and mechanical properties of DP-type and TRIP-type sheets obtained after the thermomechanical processing, Journal of Materials Processing Technology 162-163 (2005) 267-274.
  • [9] A. Grajcar, Structural and mechanical behaviour of TRIP steel in hot-working conditions, Journal of Achievements in Materials and Manufacturing Engineering 30 (2008) 27-34.
  • [10] A. Basuki, E. Aernoudt, Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite, Journal of Materials Processing Technology 89-90 (1999) 37-43.
  • [11] W. Shi, L. Li, Ch. Yang, R.Y. Fu, L. Wang, P. Wollants, Strain-induced transformation of retained austenite in low-carbon low-silicon TRIP steel containing aluminum and vanadium, Materials Science and Engineering A 429 (2006) 247-251.
  • [12] Y. K. Lee, H. C. Shin, Y. C. Jang, S. H. Kim, C. S. Choi, Effect of isothermal transformation temperature on amount of retained austenite and its thermal stability in a bainitic Fe-3%Si-0.45%C-X steel, Scipta Materialia 47 (2002) 805-809.
  • [13] A. Grajcar, H. Krztoń, Effect of isothermal bainitic transformation temperature on retained austenite fraction in C-Mn-Si-Al-Nb-Ti TRIP-type steel, Journal of Achievements in Materials and Manufacturing Engineering 35/2 (2009) 169-176.
  • [14] I. B. Timokhina, A study of the strengthening mechanism in the thermomechanically processed TRIP/TWIP steel, 3rd International Conference on Thermomechanical Processing of Steels - TMP‘2008 (CD-ROM), Padua, 2008, 1-10.
  • [15] I. B. Timokhina, P. D. Hodgson, E. V. Pereloma, Effect of microstructure on the stability of retained austenite in transformation–induced–plasticity steels, Metallurgical and Materials Transactions 35A (2004) 2331-2341.
  • [16] Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, Y. Morii, Tensile behaviour of TRIP-aided multi-phase steels studied by in situ neutron diffraction, Acta Materialia 52 (2004) 5737-5745.
  • [17] O. Muransky, P. Hornak, P. Lukas, J. Zrnik, P. Sittner, Investigation of retained austenite stability in Mn-Si TRIP steel in tensile deformation condition, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 26-30.
  • [18] L. Zhao, N. H. Van Dijk, E. Brück, J. Sietsma, S. Van der Zwaag, Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels, Materials Science and Engineering A 313 (2001) 145-152.
  • [19] J. Wu, P. J. Wray, C. I. Garcia, M. Hua, A. J. De Ardo, Image quality analysis: a new method of characterizing microstructures, ISIJ International 45/2 (2005) 254-262.
  • [20] R. Petrov, L. Kestens, Y. Houbaert, Microstructure and microtexture evolution of a TRIP-assisted steel after small deformation studied by EBSD technique, Materials Science Forum 550 (2007) 1-6.
  • [21] J. Pietrzyk, W. Osuch, A. Kruk, G. Michta, Decomposition of austenite formed at the temperature range of A3-A1 in a 0.2C-1.5Mn-1.5Si steel during isothermal annealing, Materials Engineering 3 (1998) 307-314.
  • [22] L. Skalova, R. Divizova, D. Jandova, Thermo-mechanical processing of low-alloy TRIP-steel, Journal of Materials Processing Technology 175 (2006) 387-392.
  • [23] T. Fukagawa, H. Okada, Y. Maehara, Mechanism of red scale defect formation in Si-added hot-rolled steel sheets, ISIJ International 34 (1994) 906-911.
  • [24] M. Krieger, Y. Estrin, M. Janecek, M. Niemeyer, S. Paul, Mechanical properties and bake hardening behaviour of two cold rolled multiphase sheet steels subjected to CGL heat treatment simulation, Steel Research 77 (2006) 668-674.
  • [25] Z. C. Wang, S. J. Kim, C. G. Lee, T. H. Lee, Bake-hardening behaviour of cold-rolled CMnSi and CMnSiCu TRIP-aided steel sheets, Journal of Materials Processing Technology 151 (2004) 141-145.
  • [26] Z. Li, D. Wu, Effects of hot deformation and subsequent austempering on the mechanical properties of Si-Mn TRIP steels, ISIJ International 46/1 (2006) 121-128.
  • [27] H. J. Koh, S. K. Lee, S. H. Park, S. J. Choi, S. J. Kwon, N. J. Kim, Effect of hot rolling conditions on the microstructure and mechanical properties of Fe-C-Mn-Si multiphase steels, Scripta Materialia 38 (1998) 763-768.
  • [28] Z. Novy, D. Jandova, J. Zrnik, A. Stankova, R. Divisova, Structure evolution in C-Mn-Si TRIP steel in condition of thermomechanical simulation, Proceedings of the International Conference “METAL’2004”, Hradec nad Moravici, 2004, 1-6.
  • [29] S. Zajac, V. Schwinn, K.H. Tacke, Characterisation and quantification of complex bainitic microstructures in high and ultra-high strength linepipe steels, Materials Science Forum 500-501 (2005) 387-394.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0022-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.