PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrochemical investigations of Ti6Al4V and Ti6Al7Nb alloys used on implants in bone surgery

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The subject of the research work is an analysis of surface roughness impact and the influence of the steam sterilisation process on physicochemical properties of samples made of Ti-6Al-4V and Ti-6Al-7Nb alloys after their exposure in a solution simulating the osseous environment. Design/methodology/approach: A surface roughness diversification of the samples made of Ti alloys was obtained with the aid of mechanical working – grinding and with the use of mechanical polishing. A corrosion resistance test was performed based on an anodic polarization curves recording. An Electrochemical Impedance Spectroscopy (EIS) method was used as well for assessment of the effects which occur on the surface of the examined alloys. Findings: The potentiodynamic studies showed favourable influence of steam sterilisation process (in an autoclave) on corrosion resistance of Ti alloys, regardless of the applied mechanical treatment. Exposition of the samples in Ringer’ solution caused further increase of corrosion resistance only for Ti-6Al-7Nb alloy. Analysis of impedance spectra showed presence of the capacitive passive layer for all tested variants. Research limitations/implications: Obtained results of potentiodynamic studies showed how a physicochemical condition of the samples surface, exposed to the solution simulating osseous system environment, was changing. In order to determine properties fully and surface structures of the Ti-6Al-4V and Ti-6Al-7Nb alloys after the sterilisation and the 60-day exposure to Ringer’ solution, impedance characteristics, obtained by means of EIS were determined. Differences of parameters describing electrical properties of the layers formed after the exposure to Ringer’ solution, are probably caused by a change of their chemical composition. Originality/value: The potentiodynamic and EIS studies of corrosion resistance in Ringer’ physiological solution allow to predict behaviour of Ti-6Al-4V and Ti-6Al-7Nb implants in osseous system environment.
Rocznik
Strony
24--32
Opis fizyczny
Bibliogr. 27 poz., rys., tabl.
Twórcy
autor
autor
autor
  • Division of Biomedical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, sonia.jadacka@polsl.pl
Bibliografia
  • [1] E. Krasicka-Cydzik, A. Kierzkowska, I. Glazowska, Behaviour of anodic layer in Ringer's solution on Ti6Al4V ELI alloy after bending, Archives of Materials Science and Engineering 28/4 (2007) 231-237.
  • [2] M. Long, H. J. Rack, Titanium alloys in total joint replacement - materials science perspective, Biomaterials 19 (1998) 1621-1639.
  • [3] D. M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, First Edition, Springer-Verlag, Berlin- Heidelberg-New York, 2001.
  • [4] S. Lalik, J. Cebulski, R. Michalik, Corrosion resistance of titanium in water solution of hydrochloric acid, Archives of Materials Science and Engineering 28/6 (2007) 349-352.
  • [5] J. Sieniawski, M. Motyka, Superplasticity in titanium alloys, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 123-130.
  • [6] K. Wang, The use of titanium for medical applications in the USA, Materials Science and Engineering A213 (1996) 134-137.
  • [7] J. Szewczenko, K. Nawrocka, M. Basiaga, Influence of bone union electro-stimulation on corrosion of Ti6Al4V ELI alloy implants, Journal of Achievements in Materials and Manufacturing Engineering 28/1 (2008) 27-30.
  • [8] A. Daymi, M. Boujelbene, J. M. Linares, E. Bayraktar, A. Ben Amara, Influence of work-piece inclination angle on the surface roughness in ball and milling of the titanium alloy Ti-6Al-4V, Journal of Achievements in Materials and Manufacturing Engineering 35/1 (2009) 79-86.
  • [9] W. Chrzanowski, J. Szewczenko, J. Tyrlik-Held, J. Marciniak, J. Żak, Influence of the anodic oxidation on the physicochemical properties of the Ti6Al4V ELI alloy, Journal of Materials Processing Technology 162-163 (2005) 163-168.
  • [10] M. Balazic, D. Recek, D. Kramar, M. Milfelner, J. Kopac, Development process and manufacturing of modern medical implants with LENS technology, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2009) 46-52.
  • [11] X. Liu, P. K. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering R: Reports 47/3-4 (2004) 49-121.
  • [12] D. Krupa, J. Baszkiewicz, J.A. Kozubowski, A. Barcz, J. Sobczak, A. Biliński, B. Rajchel, The influence of calcium and/or phosphorus Ion implantation on the structure and corrosion resistance of titanium, Vacuum 63/4 (2001) 715-719.
  • [13] M. C. Advincula, D. Petersen, F. Rahemtulla, R. Advincula, J. E. Lemons, Surface analysis and biocorrosion properties of nanostructured surface sol–gel coatings on Ti6Al4V titanium alloy implants, Journal of Biomedical Materials Research Part B: Applied Biomaterials 80/1 (2007) 107-120.
  • [14] Y. Zhang, E. Matykina, P. Skeldon, G. E. Thompson, Calcium and titanium release in simulated body fluid from plasma electrolytically oxidized titanium, Journal of Material Science 21 (2010) 81-88.
  • [15] K. T. Liu, J. G. Duh, Electrochemical impedance study of TiAlN film coating on a Ni-based alloy in 0.9% NaCl, Journal of Material Science 43 (2008) 3589-3595.
  • [16] N. Zaveri, G. D. McEwen, R. Karpagavalli, A. Zhou, Biocorrosion studies of TiO2 nanoparticle-coated Ti–6Al– 4V implant in simulated biofluids, Journal of Nanoparticle Research (Published online: 19 July 2009).
  • [17] S. Tamilselvi, V. Raman, N. Rajendran, Evaluation of corrosion behaviour of surface modified Ti–6Al–4V ELI alloy in hanks solution, Journal of Materials Science 40 (2010) 285-293.
  • [18] J. Marciniak, J. Tyrlik-Held, W. Walke, Z. Paszenda, Corrosion resistance of Co-Cr-Mo steel after sterilization process, Archives of Materials Science and Engineering 28/5 (2007) 289-292.
  • [19] T. Wierzchoń, E. Czarnowska, D. Krupa, Surface engineering of biomaterials in the manufacture of titanium, Warsaw University of Technology Publishing House, Warsaw, 2004 (in Polish).
  • [20] G. Rondelli, P. Torricelli, M. Fini, L. Rimondini, R. Giardino, In Vitro corrosion study by EIS of an equiatomic NiTi Alloy and an implant quality AISI 316 stainless steel, Journal of Biomedical Materials Research B 79 (2006) 320-324.
  • [21] A. Alves, L. A. da Silva, F. de Santos, D. T. Cestarolli, A. Rossi, L. M. da Silva, Electrochemical investigation of the passive behaviour of biomaterials based on Ag–Sn and Cu–Zn–Al in carbonate buffer in the absence and presence of chloride, Journal of Applied Electrochemistry 37 (2007) 961-969.
  • [22] B. Bozzini, P. Carlino, L. D’Urzo, V. Pepe, C. Mele, F. Venturo, An electrochemical impedance investigation of the behaviour of anodically oxidised titanium in human plasma and cognate fluids, relevant to dental applications, Journal of Material Science 19 (2008) 3443-3453.
  • [23] A. Baron, W. Simka, W. Chrzanowski, EIS tests of electrochemical behaviour of Ti6Al4V and Ti6Al7Nb alloys, Journal of Achievements in Materials and Manufacturing Engineering 21/1 (2007) 23-26.
  • [24] A. S. Mogoda, Y. H. Ahmad, W. A. Badawy, Corrosion behaviour of Ti–6Al–4V alloy in concentrated hydrochloric and sulphuric acids, Journal of Applied Electrochemistry 34 (2004) 873-878.
  • [25] B. Łosiewicz, A. Budniok, Use of electrochemical impedance spectroscopy technique to investigate the passivation of intermetallic Fe24Al alloy in sulphuric acid, Corrosion of Protection 11 (2003) 49-54.
  • [26] M. Slemnik, I. Milosev, An impedance study of two types of stainless steel in Ringer physiological solution containing complexing agents, Journal of Material Science 17 (2006) 911-918.
  • [27] S. M. A. Shibli, S. Mathai, Development and bio-electrochemical characterization of a novel TiO2–SiO2 mixed oxide coating for titanium implants, Journal of Material Science 19 (2008) 2971-2981.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0022-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.