PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Precise formation the phase composition and the thickness of nitrided layers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The article presents the application of the duplex technology (nitriding plus PVD) to modification of the surface of pressure casting dies made of steel WCL (EN: X37CrMoV51). In this technology, there are clearly defined expectations regarding the properties of the surface layer of the dies obtained in the nitriding process. The main part of the article is presentation a complex system of designing, in-situ visualization and control of the gas nitriding process. Design/methodology/approach: In the conception of computer designing, analytical mathematical models and artificial intelligence methods were used. Findings: As a result, possibilities were obtained of the poly-optimization and poly-parametric simulations of the course of the process combined with a visualization of the value changes of the process parameters in the function of time, as well as possibilities to predict the properties of nitrided layers. Practical implications: Computer procedures make it possible to combine, in the duration of the process, the registered voltage and time runs with the models of the process. Originality/value: For in-situ visualization of the growth of the nitrided layer, computer procedures were developed which make use of the results of the correlations of direct and differential voltage and time runs of the process result sensor (magnetic sensor), with the proper layer growth stage.
Rocznik
Strony
675--689
Opis fizyczny
Bibliogr. 34 poz., rys., tabl.
Twórcy
autor
autor
autor
autor
autor
  • Institute of Mechatronics, Nanotechnology and Vacuum Technique, Koszalin University of Technology, ul. Racławicka 15-17, 75-620 Koszalin, Poland, jerzy.ratajski@tu.koszalin.pl
Bibliografia
  • [1] S. Malinov, W. Sha, Software products for modelling and simulation in materials science, Computational Materials Science 28 (2003) 179-198.
  • [2] K. Genel, Use of artificial neural network for prediction of ion nitrided case depth in Fe–Cr alloys, Materials and Design 24 (2003) 203-207.
  • [3] A. Zhecheva, S. Malinov, W. Sha, Simulation of microhardness profiles of titanium alloys after surface nitriding using artificial neural network, Surface and Coatings Technology 200 (2005) 2332-2342.
  • [4] S. Kumar, R. Singh, A short note on an intelligent system for selection of materials for progressive die components, Journal of Materials Processing Technology 182 (2007) 456-461.
  • [5] D. Lipiński, J. Ratajski, Modeling of Microhardness Profile in Nitriding Processes Using Artificial Neural Network, Lecture Notes in Computer Science 4682 (2007) 245-249.
  • [6] J. Ratajski, J. Ignaciuk, J. Kwiatkowski, R. Olik, The kinetics of nitriding layer growth on Fe-Cr and Fe-Ti alloys, Material Science Forum 163-165 (1994) 279-284.
  • [7] J. Ratajski, R. Olik, W. Liliental, New development trend: magnetic sensor to monitor nitride layer growth in process, Proceedings of the 2nd International Conference “Carburizing and Nitriding with Atmospheres”, Cleveland, Ohio, 1995, 309-314.
  • [8] J. Ratajski, Monitoring nitride layer growth using magnetic sensor, Surface Engineering 17 (2001) 193-198.
  • [9] J. Ratajski, R. Olik, A. Baranov, Control system in-situ of nitrided layer growth and deposited layer in PVD processes, Operations’ problems 2 (2005) 93-105.
  • [10] J. Ratajski, J. Tacikowski, R. Olik, T. Suszko, O. Łupicka, Intelligent control system for gaseous nitriding process, Metallurgia Italiana 6 (2006) 1b.
  • [11] J. Ratajski, T. Suszko, Modelling of the nitriding process Journal of Materials Processing Technology 195 (2008) 212-217.
  • [12] E. Lehrer, About the iron-hydrogen-ammonia equilibrium, Zeitschrift fur Elektochemie 26 (1930) 383-392 (in German).
  • [13] J. Cranck, The Mathematics of Diffusion, Clarendon Press, Oxford, 1956.
  • [14] H. C. F. Rozendaal, P. F. Colijn, E. J. Mittemeijer, Morphology, composition and residual stresses of compound layers of nitrocarburized iron and steels, Surface Engineering 1 (1985) 30-43.
  • [15] B. Langenhan, H.J. Spies, Effect of nitriding conditions on morphology and structure of compound layers on steel, Harterei Technische Mitteilungen 47 (1992) 337-343 (in German).
  • [16] K. Schwerdtfeger, P. Grieveson, E. T. Turkdogan, Growth rate of Fe4N on iron, Metallurgical and Materials Transactions A 245 (1969) 2461-2466.
  • [17] E. J. Mittemeijer, W. T. M. Straver, P. J. Van der Schaaf, J. A. Van der Hoeven, The conversion cementite – ε nitride during the nitriding of Fe–C-alloys, Scripta Metallurgica 14 (1980) 1189-1192.
  • [18] E. J. Mittemeijer, H. C. F. Rozendaal, P. F. Colijn, P. J. Van der Schaaf, R.T . Furnée, The microstructure of nitrocarburized steels, Proceedings of the Conference “Heat Treatment”, London, 1983, 107-115.
  • [19] J. Ratajski, J. Tacikowski, M. A.. Somers, Development of the compound layer of iron (carbo) nitrides during nitriding of steel, Surface Engineering 3 (2003) 87-93.
  • [20] J. Ratajski, Relation between phase composition of compound zone and growth kinetics of diffusion zone during nitriding of steel, Surface Coating Technology 203 (2009) 2300-2306.
  • [21] J. Dobrodziej, A. Mazurkiewicz, J. Ratajski, T. Suszko, J. Michalski, The methodology of fuzzy logic application in the modelling of thermodiffusive and PVD processes - Intelligent tools for support of designing in surface treatments, Proceedings of the Congress of the International Federation of Heat Treatment and Surface Engineering (IFHTSE), Brisbane, Australia, 2007.
  • [22] T. Reti, I. Czinege, I. Frelde, J. Grum, D. Y. Ju, Selection of tools materials for cold forming operations using a computerized decision support system, Proceedings of the 17th Congress of the International Federation of Heat Treatment and Surface Engineering (IFHTSE), Kobe, Japan, 2008.
  • [23] T. Burakowski, T. Wierzchoń, Surface engineering of metals: principles, equipment, technologies, Taylor and Francis Group, LLC, 2008.
  • [24] L. A. Dobrzański, J. Madejski, Prototype of an expert system for selection of coatings for metals, Journal of Materials Processing Technology 175 (2006) 163.
  • [25] A. Mazurkiewicz, Mechanisms of knowledge transformation in the area of advanced technologies of surface engineering, Incorporating Heat Treatment of Metals International Heat Treatment and Surface Engineering I 3 (2007) 108-113.
  • [26] A. Harada, The framework of Kansei engineering, Report of Modelling the Evaluation Structure of Kansei, 1997, 49-55.
  • [27] K. P. Gurov, B. A. Kartaszkin, J. E. Ugastie, Interdiffusion in multiphase systems, Moscow, Science, 1981 (in Russian).
  • [28] J. Ratajski, Model of growth kinetics of nitrided layer in the binary Fe-N system, Zeitschrift fur Metallkunde 95 (2004) 23-29.
  • [29] G. F. Luger, Artificial intelligence and strategie for complex problem solving, Fifth Edition, Addison- Wesley, London, 2005.
  • [30] B. C. Frazer, Magnetic structure of Fe4N, Physical Review 112 (1958) 751-754.
  • [31] K. H. Eickel, W. Pitsch, Magnetic Property of Heksagonal Nitride Fe2,3N, Physica Status Solidi 39 (1970) 121-131.
  • [32] H. Heptner, H. Stroppe, Magnetic and Inductive Testing of Materials, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1965 (in German).
  • [33] E. J. Mittemeijer, The relation between macro- and microstresses and mechanical, Proceedings of the TMS-AIME Session ”Microstructural and Residual Stress Effects on the Properties of Case-Hardened steels”, Warrendale, U.S.A., 1984; 161-187.
  • [34] E. J. Mittemeijer, Lattice distortions in nitrided iron and steel, Harterei Technische Mitteilungen 36 (1981) 57-64 (in German).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0076
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.