PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crack arrest saturation model under combined electrical and mechanical loadings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The investigation aims at proposing a model for cracked piezoelectric strip which is capable to arrest the crack. Design/methodology/approach: Under the combined effect of electrical and mechanical loadings applied at the edges of the strip, the developed saturation zone is produced at each tip of the crack. To arrest further opening of the crack, the rims of the developed saturation zones are subjected to in-plane cohesive, normal uniform constant saturation point electrical displacement. The problem is solved using Fourier integral transform method which reduces the problem to the solution of Fredholm integral equation of the second kind. This integral equation in turn is solved numerically. Findings: The expressions are derived for different intensity factors and energy release rate. A qualitative analysis of the parameters affecting the arrest of opening of the crack and fatigue crack growth with respect to strip thickness and material constants are presented graphically. Research limitations/implications: The investigations are carried out by considering the material electrical brittle. Consequently, the zones protrude along the straight lines ahead of the crack tips. And further, the small scale electrical yielding conditions are used. Practical implications: Piezoelectric materials are widely getting used nowadays, even in day to day life like piezoelectric cigarette lighter, children toys etc. And, its advance used in technology like transducers, actuators has been already in progress. So, the aspect of cracking of piezoelectric materials are of great practical importance. Originality/value: The piezoelectric material under the combined effect of electrical and mechanical loadings gives the assessment of electrical displacement which is required to arrest the crack. The various useful interpretations are also drawn from the graphs.
Rocznik
Strony
544--548
Opis fizyczny
Bibliogr. 15 poz., rys., tabl.
Twórcy
autor
Bibliografia
  • [1] S. Li, W. Cao, L. E. Cross, Stress and electric displacement distribution near Griffith’s type III crack tips in piezoceramics, Materials Letters 10 (1990) 219-222.
  • [2] C. S. Lynch, W. Yang, L. Collier, Z. Suo, R. M. McMeeking, Electric field induced cracking in ferroelectric ceramics, Ferroelectrics 166 (1995) 11-30.
  • [3] H. Gao, D.M. Barnett, An invariance property of local energy release rates in a strip saturation model of piezoelectric fracture. International Journal of Fracture 79 (1996) 25-29.
  • [4] H. Gao, T.-Y. Zhang, P. Tong, Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic, Journal of the Mechanics and Physics of Solids 45 (1997) 491-510.
  • [5] V. M. A. Leitao, M. H. Aliabadi, Boundary element methods for the analysis of crack growth in non-linear fracture, International Journal of Materials and Product Technology 15 (2000) 104-116.
  • [6] D. Stevanovic, S. Kalyanasundaram, A. Lowe, P.-Y. Ben Jar, Numerical simulation of elastic-plastic interlaminar crack propagation in interlayer-toughened composite materials, International Journal of Materials and Product Technology 17 (2002) 99-107.
  • [7] R.-R. Bhargava, N. Saxena, Solution for a cracked piezoelectric plate subjected to variable load on plastic zones under mode-I deformation, Journal of Materials Processing Technology 164-165 (2005) 1495-1499.
  • [8] M.-J. Jackson, Micro-grinding electronic and optical materials using diamond-coated piezoelectric materials, International Journal of Manufacturing Technology and Management 9 (2006) 1-17.
  • [9] R. R. Bhargava, A. Setia, Crack arrest model for a piezoelectric strip subjected to Mode I loadings, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 215-218.
  • [10] A. N. Sergey, G. K. Vladislav, B. R. Andrey, V. B. Alexander, A. B. Vladislav, Analysis of crack resistance and quality of thin coatings by Acoustic Emission, International Journal of Microstructure and Materials Properties 1 (2006) 364-373.
  • [11] R. R. Bhargava, A. Setia, Modified strip saturation model for a cracked piezoelectric strip, Archives of Materials Science and Engineering 30 (2008) 33-36.
  • [12] S. Li, On saturation-strip model of a permeable crack in a piezoelectric ceramic, Acta Mechanica 165 (2003) 47-71.
  • [13] K. M. Jeong, I. O. Kim, H. G. Beom, Effect of electric displacement saturation on stress intensity factor for a crack in a ferroelectric ceramic, Mechanics Research Communications 31 (2004) 373-382.
  • [14] H. G. Beom, Y. H. Kim, C. Cho, C. B. Kim, A crack with an electric displacement saturation zone in an electrostrictive material, Archive of Applied Mechanics 76 (2006) 19-31.
  • [15] Y. Shindo, K. Tanaka, F. Narita, Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal shear, Acta Mechanica 120 (1997) 31-45.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0058
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.