PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Microstructures in Fe30Ni30Cu20P10Si5B5 melt-spun alloy ejected at various temperatures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the work is to study the influence of ejection temperature on the structure of Fe30Ni30Cu20P10Si5B5 melt-spun. Design/methodology/approach: A six-component Fe30Ni30Cu20P10Si5B5 alloy was arc-melt in argon protective atmosphere from of pure Fe, Ni, Cu elements and Fe-P, Fe-B, Ni-P, Ni-B master alloys and melt-spun in helium. The alloy was melt-spun in various temperatures. Morphology and chemical composition of the cross-section of the ingot and melt-spun ribbons were analysed with scanning electron microscope SEM with energy dispersive spectrometer EDS. The melt-spun ribbon was investigated by means of the transmission electron microscope (TEM). The melting range of the alloy was investigated by means of differential thermal analysis at the heating rate 20 K/min. Findings: The slow cooling rate resulted in the fractal-like structures formed by the Fe-rich regions and Cu-rich regions typical for the alloying system with a miscibility gap. The structures observed after rapid cooling were dependent on ejection temperatures of the alloy just before the melt spinning process. The lower ejection temperatures led to the formation of crystalline structures separated into Fe-rich and Cu-rich regions which were a result of rapid cooling within the miscibility gap. The higher ejection temperatures contributed to formation of amorphous/crystalline composite. The crystalline spherical precipitates were found to be predominantly Cu-base solid solution. Research limitations/implications: It has been shown that the multi-component Fe-Ni-Cu-P-Si-B alloy provides possibility of microstructure control of amorphous/crystalline composite due to miscibility gap. Practical implications: The work reports that the ductile phase can be introduced into the amorphous alloy by using a suitable ejection temperature control in a melt spinning process, providing possibility of controlling properties in glassy matrix alloys. Originality/value: The study provides original information about the primary structure of the arc-melt Fe30Ni30Cu20P10Si5B5 alloy as well as about the microstructure of melt-spun alloy using various ejection temperatures.
Rocznik
Strony
532--537
Opis fizyczny
Bibliogr. 25 poz., rys., tabl.
Twórcy
autor
autor
autor
Bibliografia
  • [1] H. Warlimont, Amorphous metals driving materials and process innovations, Materials Science and Engineering A304-306 (2001) 61-67.
  • [2] A. Makino, T. Hatanai, A. Inoue, T. Masumoto, Nanocrystalline soft magnetic Fe-M-B (M = Zr, Hf, Nb) alloys and their applications, Materials Science and Engineering A226-228 (1997) 594-602.
  • [3] T. Kulik, Nanocrystallization of metallic glasses, Journal of Non-Crystalline Solids 287 (2001) 145-161.
  • [4] B. Kostrubiec, R. Wiśniewski, J. Rasek, Crystallisation kinetics and magnetic properties of a Co-based amorphous alloy, Journal of Achievements in Materials and Manufacturing Engineering 16 (2006) 30-34.
  • [5] S. Lesz, D. Szewieczek, J.E. Frąckowiak, Structure and magnetic properties of amorphous and nanocrystalline Fe85.4Hf1.4B13.2 alloy, Journal of Achievements in Materials and Manufacturing Engineering 19/2 (2006) 29-34.
  • [6] K. Ziewiec, K. Bryła, A. Ziewiec, K. Prusik, The microstructure and properties of a new Fe41Ni39P10Si5B5 glass forming alloy, Archives of Materials Science and Engineering 34/1 (2008) 35-38.
  • [7] S. W. Lee, M. Y. Huh, E. Fleury, J. C. Lee, Crystallization-induced plasticity of Cu-Zr containing bulk amorphous alloys, Acta Materialia 54 (2006) 349-355.
  • [8] F. Szuecs, C. P. Kim, W. L. Johnson., Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite, Acta Materialia 49 (2001) 1507-1513.
  • [9] H. Choi-Yim, R. D. Conner, W. L. Johnson, Processing, microstructure and properties of bulk metallic glass composites, Annales de Chimie Science des Materiaux 27/5 (2002) 113-118 (in French).
  • [10] H. Tan, Y. Zhang, Y. Li, Synthesis of La-based in-situ bulk metallic glass matrix composite, Intermetallics 10 (2002) 1203-1205.
  • [11] Q. Wang, J.-J. Balandin, M. Suery, B. Van de Moortele, J.-M. Pelletier, High temperature deformation of a fully amorphous and partially crystallized bulk metallic glass, Annales de Chimie Science des Materiaux 27/5 (2002) 19-24.
  • [12] X. Hu, S. C. Ng, Y. P. Feng, Y. Li, Glass forming ability and in-situ composite formation in Pd-based bulk metallic glasses, Acta Materialia 51 (2003) 561-572.
  • [13] J. Eckert, U. Kühn, N. Mattern, G. He, A. Gebert, Structural bulk metallic glasses with different length-scale of constituent phases, Intermetallics 10 (2002) 1183-1190.
  • [14] T. C. Hufnagel, C. Fan, R. T. Ott, J. Li, S. Brennan, Controlling shear band behaviour in metallic glasses through microstructural design, Intermetallics 10 (2002) 1163-1166.
  • [15] N. Mattern, Structure formation in Metallic Glasses, Kolloquium “Microstructure Analysis in the Materials Science”, 56, Freiberg, 2005.
  • [16] N. Mattern, U. Kuehn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock, et al., Microstructure and thermal behaviour of two-phase amorphous Ni-Nb-Y alloy, Scripta Materialia 53/3 (2005) 271-274.
  • [17] W. C.Wang, J. H. Li, F. Zeng, Y. L. Gu, B. X. Liu, Fractal morphologies of dual amorphous phases observed in Y-Ti(Nb)-Co ternary systems upon ion beam mixing, Journal of Alloys and Compounds 478 (2009) L28-L32.
  • [18] http://www-db1.imr.tohoku.ac.jp/java_applet/Amor_Terna ry/amorphous_ternary.html
  • [19] P. Villars, A. Prince, H. Okamoto, Handbook of Ternary Phase Diagrams, ASM International, 1995.
  • [20] F. R. Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, A. K. Niessen, Cohesion and structure. Cohesion in metals, vol. 1,: Elsevier Science, Amsterdam,1988.
  • [21] V. T. Witusiewicz, Thermodynamics of liquid binary alloys of the 3d transition metals with metalloids: Generalization, Journal of Alloys and Compounds 221 (1995) 74-85.
  • [22] A. A. Kundig, M. Ohnuma, D. H. Ping, T. Ohkubo, K. Hono, In situ formed two-phase metallic glass with surface fractal microstructure, Acta Materialia 52 (2004) 2441-2448.
  • [23] T. Kozieł, Z. Kędzierski, A. Zielińska-Lipiec, J. Latuch, Journal of Microscopy, TEM studies of the melt-spun alloys with liquid miscibility gap, (in press).
  • [24] J. H. Perepezko, G. Wilde, Amorphization and alloy metastability in undercooled systems, Journal of Non- Crystalline Solids 274 (2000) 271-281.
  • [25] M. H. Braga, J. Vizdal, A. Kroupa, J. Ferriera, D. Soares, L. F. Malheiros, The experimental study of the Bi–Sn, Bi– Zn and Bi–Sn–Zn systems, Computer Coupling of Phase Diagrams and Thermochemistry 31 (2007) 468-478.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.