PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The application of CVD diamond films in cyclic voltammetry

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main purpose of these studies was to show the applicability of CVD (Chemical Vapour Deposition) diamond layer in electrochemistry and to work out the technology of manufacturing diamond electrodes. Design/methodology/approach: The diamond films were deposited on tungsten substrate by HF CVD technique, and then, their quality was checked by Raman spectroscopy. It was shown, using Cyclic Voltammetry (CV) measurements, that un-doped diamond films are chemically stable in aqueous solutions. Findings: The results of cyclic voltammetry measurements show that diamond electrode on tungsten substrate is electrochemically stable in aqueous solutions over a wide potential range (-3000 mV to 2000 mV). The Raman spectra confirmed the good quality of obtained diamond layer. Research limitations/implications: In particular, it was shown that diamond electrode showed a wide potential window, very low background current, chemical and physical stability. Practical implications: Presented results showed that CVD diamond films can find application in production of diamond electrodes for electrochemical application. The sensitivity of CVD diamond layers to the electroactive species indicates on possibility of application of this material for construction of chemical and biological sensors. Originality/value: The characteristics of diamond electrodes and the resistivity of this material to the chemical attack indicate that it can be employed in a number of electrochemical applications and additionally it can work in harsh environment. The HF CVD diamond layer seems to be the new, promising and versatile material for electrochemical applications.
Rocznik
Strony
486--491
Opis fizyczny
Bibliogr. 24 poz., rys., tabl.
Twórcy
autor
autor
autor
  • Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland, estaryga@p.lodz.pl
Bibliografia
  • [1] N. A. Fox, S. Mary, T. J. Davis, W. N. Wang, P. W. May, A. Bewick, J. W. Steeds, J. E. Butler, Field-emission studies of boron-doped CVD diamond films following surface treatments, Diamond and Related Materials 6 (1997) 1135-1142.
  • [2] J. R. Petherbridge, P. W. May, S. R. J. Pearce, K. N. Rosser, M. N. R. Ashfold, Low temperature diamond growth using CO2/CH4 plasmas: molecular beam mass spectrometry and computer simulation investigations, Journal of Applied Physics 89 (2001) 1484-1492.
  • [3] E. Wörner, C. Wild, W. Müller-Sebert, R. Locher, P. Koidl, Thermal conductivity of CVD diamond films: High-precision, temperature-resolved measurements, Diamond and Related Materials 5 (1996) 688-692.
  • [4] K. L. Jackson, D. L. Thurston, P. J. Boudreaux, R. W. Armstrong, C. C. M. Wu, Fracturing of industrial diamond plater, Journal of Materials Science 32 (1997) 5035-5045.
  • [5] P. W. May, S. Hohn, M. N. R. Ashfold, W. N. Wang, N. A. Fox, T. J. Davis, J. W. Steeds, Field emission from chemical vapour deposited diamond and diamond-like carbon films: Investigations of surface damage and conduction mechanisms, Journal of Applied Physics 84 (1998) 1618-1623.
  • [6] P. W. May, M. T. Kuo, M. N. R. Ashfold, Field emission conduction mechanisms in chemical-vapour-deposited diamond and diamond-like carbon films, Diamond and Related Materials 8 (1999) 1490-1495.
  • [7] S. Ertl, M. Adamschik, P. Schmid, P. Gluche, A. Flöter, E. Kohn, Surface micromachined diamond microswitch, Diamond and Related Materials 9 (2000) 970-974.
  • [8] E. Kohn, M. Adamschik, P. Schmid, S. Ertl, A. Flöter, Diamond electro-mechanical micro devices — technology and performance, Diamond and Related Materials 10 (2001) 1684-1691.
  • [9] Y. V. Pleskov, A. Y. Sakharova, M. D. Krotova, L. L. Bouilov, B. P. Spitsyn, Photoelectochemical properties of semiconductor diamond, Journal of Electroanalytical Chemistry 228 (1987) 19-27.
  • [10] J. D. Wadhawan, F. J. Del Campo, R. G. Compton, J. S. Foord, F. Marken, S. D. Bull, S. G. Davies, D. J. Walton, S. Ryley, Emulsion electrosynthesis in the presence of power ultrasound. Biphasic Kolbe coupling processes at platinum and boron-doped diamond electrodes, Journal of Electroanalytical Chemistry 507 (2001) 135-143.
  • [11] D. Gandini, E. Mahe, P. A. Michaud, W. Haenni, A. Perret, C. Comninellis, Oxidation of carboxylic acid at boron-doped diamond electrodes, Journal of Applied Electrochemistry 30 (2000) 1345-1350.
  • [12] S. Ferro, A. De Battisti, I. Duo, C. Comninellis, W. Haenni, A. Perret, Chlorine evolution at highly boron-doped diamond electrodes, Journal of the Electrochemical Society147 (2000) 2614-2619.
  • [13] G. Swain, The use of CVD diamond thin films in electrochemical systems, Advanced Materials 6 (1994) 388-392.
  • [14] F. Bouamrane, A. Tadjeddine, J. E. Butler, R. Tenne, C. Levy-Clement, Electrochemical study of diamond thin films in neutral and basic solutions of nitrate Journal of Electroanalytical Chemistry 405 (1996) 95-99.
  • [15] F. Beck, H. Krohn, W. Kaiser, M. Fryda, C. P. Klages, L. Schafer, Boron doped diamond/titanium composite electrodes for electrochemical gas generation from aqueous electrolytes, Electrochemical Acta 44 (1998) 525-532.
  • [16] J. C. Angus, C. C. Hayman, Low-pressure, metastable growth of diamond and diamondlike phases, Science 241 (1988) 913-921.
  • [17] R. Ramesham, D. C. Hill, S. R. Best, M. F. Rose, R. F. Askew, Hypervelocity impact tests on polycrystalline diamond deposited over silicon substrates, Thin Solid Films 257 (1995) 68-71.
  • [18] R. Ramesham, Voltammetric studies at the polycrystalline diamond grown over a graphite electrode material, Thin Solid Films 339 (1999) 82-87.
  • [19] J. Iniesta, P. A. Michaud, M. Panizza, G. Cerisola, A. Aldaz, C. Comninellis, Electrochemical oxidation of phenol at boron-doped diamond electrode, Electrochimica Acta 46 (2001) 3573-3578.
  • [20] R. Tenne, K. Patel, K. Hashimoto, A. Fujishima, Efficient electrochemical reduction of nitrate to ammonia using conductive diamond film electrodes, Journal of Electroanalytical Chemistry 347 (1993) 409-415.
  • [21] Y. V. Pleskov, M. D. Krotowa, V. I. Polyakov, A. V. Khomich, A. J. Rukovischuikov, B. L. Druz, I. Zaritsky, Electrochemical behaviour of a-C:N:H films, Journal of Electroanalytical Chemistry 519 (2002) 60-65.
  • [22] A. J. Bard, L. R. Faulkner, Electrochimica Methods: Fundamentals and Applications, Wiley, 1980 (Chapter 3).
  • [23] N. G. Ferreira, L. L. G. Silva, E. J. Corat, V. J. Trava – Airoldi, Kinetics study of diamond electrodes at different levels of boron doping as quasi-reversible systems, Diamond and Related Materials 11 (2002) 1523-1527.
  • [24] V. Fischer, D. Gaudini, S. Laufer, E. Blauk, Ch. Comminelis, Preparation and characterization of Ti/Diamond electrodes, Electrochimica Acta 44 (1988) 521-524.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.