PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of micropores on output properties of laminate materials with assumed medical implantation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Examination of elaborated composite material in terms of specific application in medicine – as internal prostheses of oesophagus. Development of the manufacturing technology of aramid-silicon laminated material and definition of the micro-cavities amount formed during production of the laminates. Design/methodology/approach: Aramid-silicon laminated material was made by a method of manual formation of laminates that is impregnation of reinforcement with matrix to hardening silicone process using hardening methods connected with heat. Created material was observed on Axiovert 450M light-microscope of Option Company at 100 x magnification. Findings: The results show that the preliminary manufacturing technology of aramid-silicon laminated materials allows creating a material with specific and special properties. Aramid-silicone laminate could be used in medicine for example as oesophagus prosthesis. Research limitations/implications: Carried out investigations show the problem with cautioning and ageing which are very important in having proper percentage of intensifier in developed material. Originality/value: Taking the material specific properties into account it seems that the aramid-silicon laminated material would be useful in medicine. Aramid silicone laminate could be attractive alternatively for composite material used for medical purposes and the others.
Rocznik
Strony
408--415
Opis fizyczny
Bibliogr. 26 poz., rys., tabl.
Twórcy
autor
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, agnieszka.j.nowak@polsl.pl
Bibliografia
  • [1] L. A. Dobrzański, Principle of materials science, metallography, Publication of WN–T, Gliwice – Warsaw, 2006.
  • [2] I. Hyla, Polymer materials, Publication of Silesian University of Technology, Gliwice, 2004.
  • [3] P. Rościeszewski, M. Zielecka, Silicones, Publication of WN–T, Warsaw, 2002.
  • [4] W. Szlezinger, Polymer materials vol. 1, Publication of FOSZE, Rzeszów, 1999.
  • [5] P. Czub, Z. Bończa-Tomaszewski, P. Penczek, J. Pieluchowski, Chemistry and technology enrolments resin, Publication of WN–T, Warsaw, 2002.
  • [6] W. Szlezinger, Polymer materials vol. 3, Publication of FOSZE, Rzeszów, 2001.
  • [7] U. Sianko, Polymer materials, Publication of WN–T, Warsaw, 2000.
  • [8] D. Żuchowska, Constructional polymers, Publication of WN–T, Warsaw, 2000.
  • [9] K. Imielińska, R. Wojtyra, M. Castaings, Impact resistance and damage tolerance of hybrid: carbon, glass, Kevlar/epoxy laminate, Composites 4 (2001) 188-191.
  • [10] K. Kurek, K. A. Błędzki, The effect of micropores on mechanical properties of laminate, Polymers 4 (2000) 271-281.
  • [11] L. A. Dobrzański., Materials design as a fundamental aim of materials engineering, Rudy Metale 6 (2005) 296-311 (in Polish).
  • [12] Technical information: Basic enrolments resin, Chemical Industry 8 (2000) 34-50.
  • [13] W. Królikowski, Special polymer materials, Publication of Stettin University of Technology, Stettin, 1998 (in Polish).
  • [14] J. Pieluchowski, A. Puszyński, Polymer materials technology, Publication of WN–T, Warsaw, 1992 (in Polish).
  • [15] L. A. Dobrzański, A. Pusz, A.J. Nowak, Aramid-silicon Laminated materials with special properties – new perspective of its usage, Journal of Achievements in Materials and Manufacturing Engineering 28 (2008) 148- 156.
  • [16] B. Żywicka, Opinion of aramid fabric biocompatibls – summary physician’s discussion, Polymers in medicine 3 (2004) 68-76.
  • [17] R. Kijowska, Progress in technology biomaterials applicable in surgery human being organ. Chemical Industry 4 (1998) 243-248.
  • [18] Y. S. Lipatov, Biocompatible polymers for medical application, Publication of Stettin University of Technology, Stettin, 1998 (in Polish).
  • [19] E. Bociaga, T. Jaruga, Experimental investigation of polymer flow in injection mould, Archives of Materials Science and Engineering 28/3 (2007) 165-172.
  • [20] W. Okularczyk, D. Kwiatkowski, Prognosing the durability of polymer sealings, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 125-128.
  • [21] J. Myalski, Properties of laminates containing polymer glass fibre recyclates, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 54-58.
  • [22] K. Dobrucki, A method of designing of polymer composites for impact loading, Proceedings of the 10th Jubilee International Scientific Conference Achievements in the Mechanical and Materials Engineering, AMME’2001, Gliwice-Sopot, 2001, 56-60.
  • [23] M. Rojek, J. Stabik, S. Sokol, Fatigue and ultrasonic testing of epoxy-glass composites, Journal of Achievements in Materials and Manufacturing Engineering 20 (2006) 183-186.
  • [24] D. Kwiatkowski, J. Nabialek, A. Gnatowski, The examination of the structure of PP composites with the glass fibre, Archives of Materials Science and Engineering 28/7 (2007) 405-408.
  • [25] W. C. D. Cheong and L. C. Zhang, Monocrystalline silicon subjected to multi-asperity sliding: nano-wear mechanisms, subsurface damage and effect of asperity interaction, International Journal of Materials and Product Technology 4 (2003) 398-407.
  • [26] S. H. Zhang, H. L. Chen, X. P. Wang, Numerical parametric investigation of loss factor of laminated composites with interleaved viscoelastic layers, International Journal of Vehicle Noise and Vibration 2 (2006) 62-74.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.