PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Processes forming the microstructure evolution of high-manganese austenitic steel in hot-working conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to characterise the microstructure evolution of new-developed 27Mn-4Si-2Al-Nb-Ti high-manganese steel in various conditions of hot-working. Design/methodology/approach: Flow stresses during the multistage compression test were measured using the Gleeble 3800 thermo-mechanical simulator. To describe the hot-working behaviour, the steel was compressed to the various amount of deformation (4x0.29, 4x0.23 and 4x0.19). The microstructure evolution in successive stages of deformation was determined in metallographic investigations using light, scanning and electron microscopy as well as X-ray diffraction. Findings: The steel has austenite microstructure with annealing twins and some fraction of ĺ martensite plates in the initial state. The flow stresses are much higher in comparison with austenitic Cr-Ni and Cr-Mn steels and slightly higher compared to Fe-(15-25) Mn alloys. The flow stresses are in the range of 200-400 MPa for the applied conditions of hot-working. Making use of dynamic and metadynamic recrystallization, it is possible to refine the microstructure and to decrease the flow stress to 350 MPa during the last deformation at 850°C. Applying the true strains of 0.23 and 0.19 requires the microstructure refinement by static recrystallization. After the grain refinement due to recrystallization, the steel is characterised by uniform structure of ă phase without ĺ martensite plates. Research limitations/implications: To fully describe the hot-working behaviour of the new-developed steel, further investigations in wider temperature and strain rate ranges are required. Originality/value: The hot-deformation resistance and microstructure evolution in various conditions of hot-working for the new-developed high-manganese 27Mn-4Si-2Al-Nb-Ti austenitic steel were investigated.
Rocznik
Strony
397--407
Opis fizyczny
Bibliogr. 30 poz., rys., tabl.
Twórcy
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-10, leszek.dobrzanski@polsl.pl
Bibliografia
  • [1] G. Frommeyer, U. Brüx, K. Brokmeier, R. Rablbauer, Development, microstructure and properties of advanced high-strength and supraductile light-weight steels based on Fe-Mn-Al-Si-(C),Proceedings of the 6th International Conference on Processing and Manufacturing of Advanced Materials, Thermec’2009, Berlin, 2009, 162.
  • [2] G. Frommeyer, O. Grässel, High strength TRIP/TWIP and superplastic steels: development, properties, application,La Revue de Metallurgie-CIT 10 (1998) 1299-1310.
  • [3] G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes,ISIJ International 43 (2003) 438-446.
  • [4] O. Grässel, L. Krüger, G. Frommeyer, L. W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development – properties – application, International Journal of Plasticity 16 (2000) 1391-1409.
  • [5] A. Saeed-Akbari, W. Bleck, U. Prahl, The study of grain size effect on the microstructure development and mechanical properties of a high-Mn austenitic steel,Proceedings of the 6th International Conference on Processing and Manufacturing of Advanced Materials, Thermec’2009, Berlin, 2009, 194.
  • [6] K. Renard, H. Idrissi, S. Ryelandt, F. Delannay, D. Schryvers, P. J. Jacques, Strain-hardening mechanisms in Fe-Mn-C austenitic TWIP steels: Mechanical and micromechanical characterisation,Proceedings of the 6th International Conference on Processing and Manufacturing of Advanced Materials, Thermec’2009, Berlin, 2009, 72.
  • [7] Y. G. Kim, J. M. Han, J. S. Lee, Composition and temperature dependence of tensile properties of austenitic Fe-Mn-Al-C alloys, Materials Science and Engineering A 114 (1989) 51-59.
  • [8] S. Allain, J. P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys, Materials Science and Engineering A 387-389 (2004) 158-162.
  • [9] T. Bator, Z. Muskalski, S. Wiewiórkowska, J.W. Pilarczyk, Influence of the heat treatment on the mechanical properties and structure of TWIP steel in wires, Archives of Materials Science and Engineering 28 (2007) 337-340.
  • [10] E. Mazancova, I. Schindler, K. Mazanec, Stacking fault energy analysis of the high manganese TWIP and TRIPLEX alloys, Hutnicke Listy 3 (2009) 55-58.
  • [11] J. Kliber, T. Kursa, I. Schindler, The influence of hot rolling on mechanical properties of high-Mn TWIP steels, 3rd International Conference on Thermomechanical Processing of Steels, TMP‘2008, (CD-ROM), Padua, 2008, s.1-12.
  • [12] J. Kliber, T. Kursa, I. Schindler, Hot rolling of steel with TWIP effect, Metallurgist – Metallurgical News 8 (2008) 481-483.
  • [13] S. Vercammen, B. Blanpain, B. C. De Cooman, P. Wollants, Mechanical behaviour of an austenitic Fe-30Mn-3Al-3Si and the importance of deformation twinning, Acta Materialia 52 (2004) 2005-2012.
  • [14] A. Grajcar, W. Borek, The thermo-mechanical processing of high-manganese austenitic TWIP-type steels, Archives of Civil and Mechanical Engineering 8/4 (2008) 29-38.
  • [15] L. A. Dobrzański, A. Grajcar, W. Borek, Influence of hot-working conditions on a structure of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 29/2 (2008) 139-142.
  • [16] L. A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution and phase composition of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 218-225.
  • [17] A. Grajcar, M. Opiela, G. Fojt-Dymara, The influence of hot-working conditions on a structure of high-manganese steel, Archives of Civil and Mechanical Engineering 9/3 (2009) 49-58.
  • [18] K. K. Jee, J. H. Han, W. Y. Jang, Measurement of volume fraction of ε martensite in Fe-Mn based alloys, Materials Science and Engineering A 378 (2004) 319-322.
  • [19] G. Niewielski, Changes of structure and properties of austenitic steel caused by hot deformation, Scientific Books of the Silesian University of Technology 58, The Silesian University of Technology Publishers, Gliwice, 2000 (in Polish).
  • [20] G. Niewielski, M. Hetmańczyk, D. Kuc, Influence of the initial grain size and deformation parameters on the mechanical properties during hot plastic deformation of austenitic steels, Materials Engineering 24/6 (2003) 795-798 (in Polish).
  • [21] N. Cabanas, N. Akdut, J. Penning, B. C. De Cooman, High-temperature deformation properties of austenitic Fe-Mn alloys, Metallurgical and Materials Transactions A 37 (2006) 3305-3315.
  • [22] A. S. Hamada, L. P. Karjalainen, M. C. Somani, The influence of aluminium on hot deformation behaviour and tensile properties of high-Mn TWIP steels, Materials Science and Engineering A 467 (2007) 114-124.
  • [23] A. S. Hamada, L. P. Karjalainen, M. C. Somani, R. M. Ramadan, Deformation mechanisms in high-Al bearing high-Mn TWIP steels in hot compression and in tension at low temperatures, Materials Science Forum 550 (2007) 217-222.
  • [24] M. Sabet, A. Zarei-Hanzaki, S. Khoddam, An investigation to the hot deformation behaviour of high-Mn TWIP steels, 3rd International Conference on Thermomechanical Processing of Steels, TMP‘2008, (CD-ROM), Padua, 2008, s.1-7.
  • [25] J. Kliber, K. Drozd, Stress-strain behaviour and softening in manganese TWIP steel tested in thermal-mechanical simulator, Hutnicke Listy 3 (2009) 31-36.
  • [26] L. A. Dobrzański, A. Grajcar, W. Borek, Hot-working behaviour of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 7-14.
  • [27] L. A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution of high-manganese steel during the thermo-mechanical processing, Archives of Materials Science and Engineering 37 (2009) 69-76.
  • [28] R. Kuziak, Modelling of structure changes and phase transformations occurring in thermo-mechanical processes of steel, Institute for Ferrous Metallurgy, Gliwice, 2005 (in Polish).
  • [29] L. A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution of C-Mn-Si-Al-Nb high-manganese steel during the thermomechanical processing, Materials Science Forum (in print).
  • [30] T. Niendorf, C. Lotze, D. Canadinc, A. Frehn, H.J. Maier, The role of monotonic pre-deformation on the fatigue performance of a high-manganese austenitic TWIP steel, Materials Science and Engineering A 499 (2009) 518-524.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.