PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some effects of multiple injection moulding on selected properties of ABS

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this work was to investigate the influence of multiple (up to 10 times) injection moulding of acrylonitrile butadiene styrene (ABS) on some properties of the obtained moulded pieces. Design/methodology/approach: The investigated samples were obtained during the industrial injection moulding. There were determined the sample mechanical properties (by a tensile test), melt flow rate, temperatures of phase transitions (by differential scanning calorimetry, DSC), temperatures of thermal degradation (by thermogravimetric analysis, TGA), as well as storage modulus and damping coefficient (both by dynamic mechanical analysis, DMA). Findings: After the first injection mouldings, minor decreases (ca. 2.0 %) in the tensile strength were observed. After the next injection mouldings, this quantity did not change much. The melt flow rate increased along with the number of injection mouldings. The glass transition temperatures (from DSC) of butadiene and acrylonitrile styrene fractions don’t vary with the number of injection mouldings and are ca. 61 and +104şC, respectively. Research limitations/implications: In order to confirm that degradation process occurs in ABS during injection mouldings, further investigation is necessary, mostly that on variations in the mean molecular weight of ABS. Practical implications: The studies carried out by now indicate that there are no arguments not to subject the ABS technological waste to the management by material recycling. Originality/value: It has been observed that the largest changes in the tensile strength and melt flow rate of ABS occur during its first injection moulding and a melt flow rate increases slightly with the number of injection mouldings. The temperatures of phase transitions and thermal as well as the storage modulus and damping coefficient of ABS do not essentially change after repeated injection mouldings.
Rocznik
Strony
361--368
Opis fizyczny
Bibliogr. 33 poz., rys., tabl.
Twórcy
autor
  • Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej-Curie 55, 87-100 Toruń, Poland,, marzenk@ukw.edu.pl
Bibliografia
  • [1] F. La Mantia (Ed.), „Handbook of Plastics Recycling”, Rapra Technology Ltd, Shawbury 2002.
  • [2] H. Hisken, S. Moss, J-R. Pauquet, H. Zweifel, Degradation of polyolefins during melt processing, Polymer Degradation and Stability 34 (1991) 279-286.
  • [3] J. Stabik, Ł. Suchoń, M. Rojek, M. Szczepanik, Investigation of processing properties of polyamide filled with hard coal, Journal of Achievements in Materials and Manufacturing Engineering 33/2 (2009) 142-149.
  • [4] G. Wróbel, J. Kaczmarczyk, J. Stabik, M. Rojek, Numerical models of polymeric composite to simulate fatigue and ageing processes, Journal of Achievements in Materials and Manufacturing Engineering 34/1 (2009) 31-38.
  • [5] A. Akinci, Mechanical and morphological properties of basalt filled polymer matrix composites, Archives of Materials Science and Engineering 35/1 (2009) 29-32.
  • [6] A. Akinci, Mechanical and structural properties of polypropylene composites filled with graphite flakes, Archives of Materials Science and Engineering 35/2 (2009) 91-94.
  • [7] M. Rojek, J. Stabik, Mechanical and electrical properties of mined coal filled polyethylene and polyamide, Archives of Materials Science and Engineering, 36/1 (2009) 34-40.
  • [8] M. Szczepanik, J. Stabik, M. Łazarczyk, A. Dybowska, Influence of graphite on electrical properties of polymeric composites, Archives of Materials Science and Engineering, 37/1 (2009) 37-44.
  • [9] G. Wróbel, A. Pusz, M. Szymiczek, K. Michalik, Swagelining as a method of trenchless pipelines rehabilitation, Journal of Achievements in Materials and Manufacturing Engineering 33/1 (2009) 27-34.
  • [10] A. Pusz, K. Michalik, Creep damage mechanisms in gas pipes made of high density polyethylene, Archives of Materials Science and Engineering, 36/2 (2009) 89-95.
  • [11] M. Żenkiewicz, P. Rytlewski, K. Moraczewski, M. Stepczyńska, T. Karasiewicz, J. Richert, W. Ostrowicki, Effect of multiple injection moulding on some properties of polycarbonate, Archives of Materials Science and Engineering 37/2 (2009) 94-101.
  • [12] R. Marissen, D. Schudy, A. V. J. M. Kemp, S. M. H. Coolen, W. G. Duijzings, A. Van Der Pol, A. J. Van Gulick, The effect of material defects on the fatigue behaviour and the fracture strain of ABS, Journal of Polymer Science 36 (2001) 4167-4180.
  • [13] P.-Y. B. Jar, K. Konoshi, T. Shinmura, Characterization of toughness variation due to intrinsic defects in high-thermal-resistant poly(acrylonitrile-butadiene- styrene) (ABS), Journal of Polymer Science 37 (2002) 4521-4528.
  • [14] H. J. Kwon, P.-Y. B. Jar, Z. Xia, Residual toughness of poly(acrylonitrile-butadiene- styrene) (ABS) after fatigue loading – effect of uniaxial fatigue loading, Journal of Polymer Science 39 (2004) 4821-4828.
  • [15] J. E. Mark (Ed.), Polymer Data Handbook, Oxford University Press Inc., Cincinnati 1999,
  • [16] M. Y. Wey, C. L. Chang, Kinetic study of polymer incineration, Polymer Degradation and Stability 48 (1995) 25-33.
  • [17] A. Arostegui, M. Sarrionandia, J. Aurrekoetxea, I. Urruibeascoa, Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitryle-butadiene-styrene copolymer, Polymer Degradation and Stability 91 (2006) 2768-2774.
  • [18] R. Balart, J. López, D. Garcia, M. D. Salvador, Recycling of ABS and PC from electrical waste. Effect of miscibility and previous degradation on final performance of industrial blends, European Polymer Journal 41 (2005), 2150-2160.
  • [19] R. Balart, L. Sánchez, J. López, A. Jiménez, Kinetic analysis of thermal degradation of recycled polycarbonate/ acrylonitrile-butadiene-styrene mixtures from electric and electronic equipment, Polymer Degradation and Stability 91 (2006) 527-534.
  • [20] R. Ramani, C. Ranganathaiah, Degradation of acrylonitrile-butadiene-styrene and polycarbonate by UV irradation, Polymer Degradation and Stability 69 (2000) 347-354.
  • [21] B. E. Tignas, L. S. Burn, P. Davis, A. J. Hill, Thermal degradation of acrylonitrile-butadiene-styrene (ABS) blends, Polymer Degradation and Stability 76 (2002) 425-434.
  • [22] A. Boldizar, K. Möller, Degradation of ABS during repeated processing and accelerated ageing, Polymer Degradation and Stability 81 (2003) 359-366.
  • [23] X. J. Bai, D. H. Isaac, K. Smith, Reprocessing acrylonitrile-butadiene-styrene plastics: structure – property relationships, Polymer Engineering Science 47 (2007) 120-130.
  • [24] T. Boronat, V. J. Segui, M. A. Peydro, M. J. Reig, Influence of temperature and shear rate on the rheology and 7processability of reprocessed ABS in injection molding process, Journal of Materials Processing Technology 209 (2009) 2735-2745.
  • [25] Standard PN - EN ISO 527 – 2, 1998. Plastics - Determination of tensile properties - Part 2: Test conditions for moulding and extrusion plastics.
  • [26] Standard PN - EN ISO 527 – 1, 1998. Plastics - Determination of tensile properties - Part 1: General principles.
  • [27] Standard PN - EN ISO 1133, 2005. Plastics – Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics.
  • [28] Standard PN - EN ISO 11357 - 1, 2002. Plastics – Differential scanning calorimetry (DSC) – Part 1: General principles.
  • [29] Standard ISO 11357 - 2, 1999. Plastics – Differential scanning calorimetry (DSC) – Part 2: Determination of glass transition temperature.
  • [30] Standard PN-EN ISO 11358, 2004. Plastics – Thermogravimetry (TG) of polymers. – General principles.
  • [31] Standard D 4065-01, 2001.Standard Terminology for: Plastics: Dynamic Mechanical Properties.
  • [32] H. Blom, R. Yeh, R. Wojnarowski, M. Ling, Detection of degradation of ABS materials via DSC, Journal of Thermal Analysis and Calorimetry 83 (2006) 113-115.
  • [33] K. P. Menard, Dynamic Mechanical Analysis: A Practical Introduction, CRC Press, Boca Raton, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.