PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal barrier coatings : characteristics of microstructure and properties, generation and directions of development of bond

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of the paper is to present the review of characterisation of microstructure, properties as well as technology of receiving the heat resistance layers used as bond coats in thermal barrier coatings. Design/methodology/approach: General structure characterisation of the final influence of individual TBC`s sublayers was described. Especially the detailed characterisation of bond coats such as MeCrAlY and aluminides diffusion coatings was showed (used for EB-PVD obtained TBC`s). Findings: The influence of modification of chemical composition was described on microstructure and property of bond coats as well. It defines reactive elements such as Hf and the noble metals - Pt influence on increasing of heat resistance of bond coats, and, as a consequence, the growth of durability of coating thermal barriers. Different methods of modification of basic layers, for example the additional aluminizing process of MCrAlY coating was described as well. Practical implications: Additionally, the other types of bond coats were characterised, typically used for energy conversion systems and in case of Diesel engines and especially bond coats for titanium and titanium aluminides alloys. Originality/value: In the last part of the paper, new concepts such as „smart coatings” and diffusion barriers were shown.
Rocznik
Strony
323--331
Opis fizyczny
Bibliogr. 65 poz., rys., tabl.
Twórcy
autor
  • Department of Materials Science, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland, grzegorz.moskal@polsl.pl
Bibliografia
  • [1] S. M. Meier, D. K. Gupta, The evolution of thermal barrier coatings in gas turbine applications, Journal of Engineering for Gas Turbines and Power 116 (1994) 250-257.
  • [2] B. A. Pint, I. G. Wright, W. J. Brindley, Evaluation of TBC Systems on Novel Substrates, Journal of Thermal Spray Technology 9/2 (2000) 198-203.
  • [3] N. Padture, M. Gell, E. H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science 296 (2002) 280-284.
  • [4] R. L Jones, Thermal barrier coatings, in Metallurgical and Ceramic Coatings, Chapman & Hall, London, 1996.
  • [5] U. Schultz, et al., Some recent trends in research and technology of advanced thermal barrier coatings, Aerospace Science and Technology 7(2003) 73-80.
  • [6] G. W. Goward, Progress in coating for gas turbine airfoils, Surface and Coating Technology 108-109 (1998) 73-79.
  • [7] N. Birks, G. H. Meier, F. S. Petit, High-Temperature Corrosion Resistance, Journal of Metals 39/12 (1987) 28-31.
  • [8] J. R. Nichols, Designing oxidation-resistant coatings, Journal of Metals 52 (2000) 28-35.
  • [9] L. Swadźba, Substantial report on investigative assignment within the ordered framework of project No. PBZ-KBN-100/T08/2003, The assignment project number PBZ-100/7-5/2004, The assignment’s title: “Elaborating the technology bases for obtaining and testing the gradient coatings properties of thermal barriers with changeable chemistry or changeable porosity, applied for gas turbine components”, Katowice, 2007 (in Polish).
  • [10] T. E. Strangman, Thermal barrier coatings for turbine airfoils, Thin Solid Films 127 (1985) 93-105.
  • [11] H. M. Tawancy, On the role of yttrium during high-temperature oxidation of a NiCrAlFeY alloy, Metallurgical Transaction 21 (1991) 1463-1465.
  • [12] J. R. Nicholls, B. Bordent, Advanced coatings for gas turbines, Materials for Advanced Power Engineering 2006, Proceedings of the 8th Liege Conference, Part III, 2006, 1696-1721.
  • [13] T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, D. P. Leta, The influence of yttrium on oxide scale growth and adherence, Oxidation of Metals 29 (1988) 445-472.
  • [14] F. A. Golightly, F. H. Stott, G. C. Wood, The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy, Oxidation of Metals 10/3 (1976) 163-187.
  • [15] A. W. Funkenbusch, J. G. Smeggil, N. S.Bornstein, Reactive Element-Sulphur Interaction And Oxide Scale Adherence, Metallurgical Transactions A, Physical metallurgy and materials science 16/6 (1985) 1164-1166.
  • [16] J. D. Kuenzly, D. L. Douglass, The oxidation mechanism of Ni3Al containing yttrium, Oxidation of Metals 8/3 (1974) 139-178.
  • [17] J. L. Smialek, Effect of Sulphur Content on Al2O3 Scale Adhesion, in Microscopy of Oxidation, Institute of Metals (1991) 258-270.
  • [18] W. P. Allen, N. S. Bornstein, High Temperature Coatings I, TMS Warrendale, 1995, 193-202.
  • [19] D. Stöver, C. Funke, Directions of the development and thermal barrier coatings in energy applications, Journal of Materials Processing Technology 92-93 (1999) 195-202.
  • [20] T. N. Rhys-Jones, Coatings for blade and vane applications in gas turbines, Corrosion Science 29 (1989) 623-646.
  • [21] M. Eskner, R. Sandstro􀞠m, Measurement of the ductile-to-brittle transition temperature in a nickel aluminide coating by a miniaturised disc bending test technique, Surface and Coatings Technology 165/1 (2003) 71-80.
  • [22] Z. D. Xiang, J. S. Burnell-Gray, P. K. Datta, Aluminide coating formation on nickel-base superalloys by pack cementation process, Journal of Materials Science 36/23 (2001) 5673 -5682.
  • [23] B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prussner, K.B. Alexander, Substrate and bond coat compositions: factors affecting alumina scale adhesion, Materials Science and Engineering 245 (1998) 201-211.
  • [24] B. A. Pint, The Oxidation Behaviour of Oxide-Dispersed β-NiAl: I. Short-Term Performance at 1200°C, Oxidation of Metals 49 (1998) 531-560.
  • [25] B. A. Pint, K. L. More, I. G. Wright, P. F. Tortorelli, Characterization of Thermally Cycled Alumina Scales, Materials at High Temperature 17 (2000) 165-171.
  • [26] B. M. Warnes, D. C. Punola, Clean diffusion coatings by chemical vapour deposition, Surface and Coatings Technology 94–95 (1997) 1-6.
  • [27] J. A. Haynes, Y. Zhang, W. Y. Lee, B. A. Pint, I. G. Wright, K. M. Cooley, J. M. Hampikian, Elevated temperature coatings: science and technology III, TMS, Warrendale, 1999.
  • [28] E. J. Felten, F. S. Pettit, Development, growth, and adhesion of Al2O3 on platinum-aluminum alloys, Oxidation of Metals 10 (1976) 189-223.
  • [29] J. G. Fountain, F. A. Golightly, F. H. Stott, G.C. Wood, The influence of platinum on the maintenance of α-Al2O3 as a protective scale, Oxidation of Metals 10 (1976) 341-345.
  • [30] H. M. Tawancy, N. Sridhar, N. M. Abbas, Comparative thermal stability characteristics and isothermal oxidation behaviour of an aluminized and Pt aluminized Ni base superalloy, Scripta Metallurgica and Materiallia 33(1995) 1431–1438.
  • [31] M. K. Ferber, J. P. Singh., J. A. Haynes, M. Lance, I. G. Wright, H. Wang, G. Romanoski, Advanced Turbine Systems Program 1998 Annual Report, Department of Energy, 1998.
  • [32] I. G. Wright, B. A. Pint, Proceedings of the First International Conference of Industrial Gas Turbine Technology (CAME-GT), Brussels, 2003.
  • [33] T. M. Yonushonis, Overview of Thermal Barrier Coatings in Diesel Engines, Journal of Thermal Spray Technology 6/1 50-56.
  • [34] M. Konter M. Thumann, Materials and manufacturing of advanced industrial gas turbine components, Journal of Materials Processing Technology 117 ( 2001) 386-390.
  • [35] Z. Tang, F. Wang, W. Wu, Effect of MCrAlY overlay coatings on oxidation resistance of TiAl intermetallics, Surface and Coating Technology 99 (1998) 248-252.
  • [36] H. G. Jung, D. J. Jung, K. Y. Kim, Effect of Cr addition on the properties of aluminide coating layers formed on TiAl alloys, Surface and Coating Technology 154 (2002) 75-81.
  • [37] D. F. Bettridge, R. Wing, S. R. J. Saunders, The exploration of protective coating and deposition processes for nickel-base alloys and gamma titanium aluminides, Materials for Advanced Power Engineering 1998, Proceedings Part II, 5, 961-976.
  • [38] Z. Tang, L. Niewolak, V. Shemet, L. Singheiser, W. J. Quadakkers, F. Wang, W. Wu, A. Gil, Development of oxidation resistant coatings for γ-TiAl based alloys, Materials Science and Engineering 328 (2002) 297-301.
  • [39] Z. Liu, T. Narita, The effect of water vapour on the oxidation behaviour of γ-TiAl–Ag coatings at 1073 K in air, Intermetallics 11 (2003) 795-805.
  • [40] Z. D. Xiang, S. Rose, J. S. Burnell-Gray, P. K. Datta, Co-deposition of aluminide and silicide coatings on γ-TiAl by pack cementation process, Journal of Materials Science 38 (2003) 19-28.
  • [41] Z. D. Xiang, S. Rose, P. K. Datta, Vapour phase co-deposition of Al and Si to form diffusion coatings on γ-TiAl, Materials Science and Engineering A 356 (2003) 181-189.
  • [42] W. Liang, X. G. Zhao, Improving the oxidation resistance of TiAl-based alloy by siliconizing, Scripta Materialia 44 (2001) 1049-1054.
  • [43] E. Lugscheider, C. W. Siry, S. R. J. Saunders, The behaviour of PVD SiAlN type coatings deposited on γ - TiAl, Materials for Advanced Power Engineering 1998, Proceedings Part II, 5, 1319-1327.
  • [44] L. Swadźba, A. Maciejny, B. Mendala, G. Moskal, G. Jarczyk, Structure and Resistance to Cyclic Oxidation of Al- Si Diffusion Coatings Deposited by Arc-PVD on TiAlCrNb Alloy, Surface and Coatings Technology 165 (2003) 273– 280.
  • [45] L. Swadźba, M. Hetmańczyk, B. Mendala, G. Moskal, G. Jarczyk, Long-time Cyclic Oxidation of Al-Si Diffusion Coating Deposited by Arc-PVD on TiAlCrNb Alloy, Surface and Coatings Technology 184 (2004) 93-101.
  • [46] G. Moskal, M. Goral, L. Swadźba, B. Mendala, G. Jarczyk, Characterization of TiAlSi coating deposited by Arc-PVD method on TiAlCrNb intermetallic base alloy, Defect and Diffusion Forum, 237-240, 1153-1156.
  • [47] M. Góral, G. Moskal, L. Swadźba, Microstructural characteristics for Al-Si coating deposited on gamma-TiAl of increased Niobium content, Materials Engineering 5/147 (2005) 718-720 (in Polish).
  • [48] G. Moskal, Aluminide Coatings for Ti-Al Intermetallic Alloys, 2-nd Technological Co-operation Forum with WSK Rzeszow and PW Kalisz, Material Engineering Department at The Warsaw University of Technology 2006 (in Polish).
  • [49] M. Góral, G. Moskal, L. Swadźba, The influence of silicon on microstructure and isothermal oxidation of diffusion aluminide coatings deposited on hi-niobium TiAl intermetallic alloy, Third International Workshop on γ-TiAl Technologies, 2006, Bamberg, Book of Abstract, 29-30.
  • [50] G. Moskal, Aluminide coatings deposited by Arc-PVD method on TiAlCrNb intermetallic alloy, Third International Workshop on 􀈖-TiAl Technologies, 2006, Bamberg, Book of Abstract, 32-34.
  • [51] L. Swadźba, M. Góral, G. Moskal, Structure of aluminide coatings deposited on TiAl alloys by out-of-pack method, Third International Workshop on γ-TiAl Technologies, 2006, Bamberg, Book of Abstract, 35-36.
  • [52] G. Moskal, Evaluation of microstructure and properties of oxidation resistance coatings on Ti-Al based alloys, Bulletin Of The Polish Academy Of Sciences, Technical Sciences,54, 1, 2006, Scientific awards of the Division IV Technical Sciences of the Polish Academy of Sciences in 2005.
  • [53] G. Moskal, Doctor’s Thesis, Structure and heat-resisting coatings’ properties forming on Ti-48Al alloys, Katowice, 2004.
  • [54] S. P. Gupta, Intermetallic compounds in diffusion couples of Ti with Al-Si eutectic alloy, Materials Characterization 49 (2003) 321-330.
  • [55] N. Czech, F. Schitz, W. Stamm, Improvement of MCrAlY coatings by addition of rhenium, Surface and Coating Technology 68-69 (1994) 17-21.
  • [56] J. T. Prater, J. W. Patten, D. D. Hayes, R. W. Moss, Proceedings of the second Conference on Advanced materials for alternate fuels capable heat engines, Palo Alto, CA EPRI, 7/29-7/43, 1981.
  • [57] S. G. Young, G. R. Zellars, A feasibility study of a diffusion barrier between Ni-Cr-Al coatings and nickel-based eutectic alloys, Thin Solid Films 53 (1987) 241-250.
  • [58] J. R. Nicholls, K. J. Lawson, G. Chester, Y. L. H.asiri, P. Hancock, European Research on Materials Substitution 295-307, Elsevier, London, 1988.
  • [59] T. Narita, K. Z. Thosen, L. Fengqun, H. Murakami, B. Gleeson, D. Young, Surface Coating Technology (2004).
  • [60] L. Peich, D. F. Bettridge, Materials for Advanced Power Engineering, 1994, 717-740.
  • [61] J. R. Nicholls, N. J. Simms, W. Y. Chan, H.E . Evans, Smart overlay coatings - concept and practice, Surface and Coating Technology 149 (2002) 236-244.
  • [62] B. Gleeson,W. Wang, S. Hayashi, D. Sordelet, Effects of Platinum on the Interdiffusion and Oxidation Behaviour of Ni-Al-Based Alloys, Materials Science Forum 461-464, (2004) 213-222.
  • [63] J. R. Nicholls, Advances in coating design for high-performance gas turbines, MRS Bulletin 28/ 9(2003) 659- 670.
  • [64] D. S. Rickerby, S. R. Bell, R. G. Wing, Method of applying a thermal barrier coating to a superalloy article and a thermal barrier coating, US Patent No. 5,667,663, 1997.T.E. Strangman, Thermal barrier coatings for turbine airfoils, Thin Solid Films 127 (1985) 93-105.
  • [65] B. A. Nagaraj, W. B. Connor, R. W. Jendrix, D. J. Wortman, L. W. Plemmons, Platinum, rhodium, or palladium protective coatings in thermal barrier coating systems, US Patent No. 5,427,866, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.