PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phases morphology and distribution of the Al-Si-Cu alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this paper results of phase morphology investigation are presented of a newly developed Al-Si-Cu alloy. Such studies are of great interest for the metal casting industry, mainly the automotive industry, where improvement of cast elements quality is crucial for economic and quality reason and depends mainly on properly performed controlling process of the production parameters Design/methodology/approach: The basic assumptions of this work are realised with Universal Metallurgical Simulator and Analyzer. The solidification process itself is analysed using the UMSA device using the Derivative Thermo Analysis. Findings: During the investigation the formation of aluminium reach (á-Al) dendrites was revealed and also the occurrence of the á+â eutectic, the ternary eutectic á+Al2Cu+â, as well as iron and manganese containing phase was confirmed. This work shows that the thermal modification of the Al-Si-Cu can be quantitatively assessed by analysis of the microstructure evaluation as well as of the cooling curve thermal characteristics. Research limitations/implications: The investigations were performed using standard metallographic investigation as optical, scanning and transmission electron microscopy methods; also the EBSD phase identification method based on the kikuchi lines identification was used. The results in this paper are valuable only for the Al2Cu, Fe and Mg containing phases, and are not performed for the assessment of the Silicon Modification Level. Practical implications: As an effect of this study it will be possible to understand and to influence the mechanism of structure forming, refinement and nucleation. Also better understanding of the thermal characteristics will be provided to achieve a desirable phase morphology required for specific application of this material under production conditions. Originality/value: The originality of this work is based on applying of regulated cooling rate of aluminium alloy for structure and mechanical properties changes. In this work the dependence among the regulated cooling speed, chemical composition and structure of the investigated aluminium cast alloy on the basis of the thermo-analysis was presented.
Rocznik
Strony
309--316
Opis fizyczny
Bibliogr. 25 poz., rys., tabl.
Twórcy
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, krzysztof.labisz@polsl.pl
Bibliografia
  • [1] M. Krupiński, L. A. Dobrzański, J. H. Sokołowski: Microstructure analysis of the automotive Al-Si-Cu castings, Archives of Foundry Engineering 8 (2008) 71-74.
  • [2] L. A. Dobrzański, M. Krupiński, K. Labisz, Derivative thermo analysis of the near eutectic Al-Si-Cu alloy, Archives of Foundry Engineering 8/4 (2008) 37-40.
  • [3] H. Yamagata, H. Kurita. M. Aniolek, W. Kasprzak, J. H. Sokołowski, Thermal and metallographic characteristics of the Al-20% Si high-pressure die-casting alloy for monolithic cylinder blocks, Journal of Materials Processing Technology 199 (2008) 84-90.
  • [4] X. Chen, W. Kasprzak, J. H. Sokołowski: Reduction of the heat treatment process for Al-based alloys by utilization of heat from the solidification process, Journal of Materials Processing Technology 176 (2006) 24-31.
  • [5] L. A. Dobrzanski, R. Maniara, J. Sokołowski, W. Kasprzak: Effect of cooling rate on the solidification behaviour of AC AlSi7Cu2 alloy, Journal of Materials Processing Technology 191 (2007) 317–320.
  • [6] J. G. Kauffman, E. L. Rooy, Aluminum Alloy Castings, ASM International, Ohio 2005.
  • [7] S. G. Shabestari, M. Malekan, Thermal Analysis Study of the Effect of the Cooling Rate on the Microstructure and Solidification Parameters Of 319 Aluminum Alloy, Canadian Metallurgical Quarterly, 44, 2005.
  • [8] L. A Dobrzański, K. Labisz, R. Maniara, Microstructure investigation and hardness measurement in Al-Ti alloy with additions of Mg after heat treatment, Proceedings of the 13th International Scientific Conference COMMENT 2005, Gliwice-Wisła, 2005.
  • [9] L. Bäckerud, E. Król, J. Tamminen: Solidification Characteristics of Aluminum Alloys, Vol. 1, Universitetsforlaget, Oslo, 1986.
  • [10] L. Bäckerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum Alloys 2, AFS, 1992.
  • [11] L. Bäckerud, G. Chai: Solidification Characteristics of Aluminum Alloys 3, AFS, 1992.
  • [12] Ł. Bernat, J. Hajkowski, M. Hajkowski: Microstructure and porosity of aluminum alloy casting whereas mechanical properties, Archives of Foundry 6/22 (2006) 41-48 (in Polish).
  • [13] L. A. Dobrzański, R. Maniara, J. H. Sokolowski: The effect of cast Al-Si-Cu alloy solidification rate on alloy thermal characteristics, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 217-220.
  • [14] A. Fajkiel, P. Dudek, G. Sęk-Sas, Foundry engineering XXI c. Directions of metallurgy development and Ligot alloys casting, Publishers Institute of Foundry Engineering, Cracow, 2002.
  • [15] P. D. Lee, A. Chirazi, R. C. Atwood, W. Wan, Multiscale modelling of solidification microstructures, including microsegregation and microporosity, in an Al–Si–Cu alloy, Materials Science and Engineering A365 (2004) 57–65.
  • [16] M. Krupinski, L. A. Dobrzański, J. H. Sokolowski, W. Kasprzak, G. Byczynski, Methodology for automatic control of automotive Al-Si cast components, Materials Science Forum 539-543 (2007) 339-344.
  • [17] C. H. Caceres, M. B. Djurdjevic, T. J. Stockwell, J. H. Sokolowski, The effect of Cu content on the level of microporosity in Al-Si-Cu-Mg casting alloys, Scripta Materialia 40 (1999) 631–637.
  • [18] R. MacKay, M. Djurdjevic, J. H. Sokolowski, The Effect of Cooling Rate on the Fraction Solid of the Metallurgical Reaction in the 319 Alloy, AFS Transaction, 2000.
  • [19] C. H Cáceres, M. B. Djurdjevic, T. J. Stockwell, J. H. Sokolowski, Cast Al: The Effect of Cu Content on the Level of Microporosity in Al-Si-Cu-Mg Casting Alloys, Scripta Materiala, 1999.
  • [20] E. Carrera, A. Rodriguez, J. Talamantes, S. Valtierra, R. Colas, Measurement of residual stresses in cast aluminium engine blocks, Journal of Materials Processing Technology 189 (2007) 206-210.
  • [21] L. A. Dobrzański, M. Krupiński, J. H. Sokolowski, Application of artificial intelligence methods for classification of defects of Al-Si-Cu alloys castings, Archives of Foundry 6/22 (2006) 598-605 (in Polish).
  • [22] Z. Muzaffer: Effect of copper and silicon content on mechanical properties in Al–Cu–Si–Mg alloys, Journal of Materials Processing Technology 169 (2005) 292–298.
  • [23] D. Ovono, I. Guillot, D. Massinon, The microstructure and precipitation kinetics of a cast aluminium alloy, Scripta Materialia 55 (2006) 259–262.
  • [24] G. Mrówka-Nowotnik, Damage mechanism in AlSi1MgMn alloy, Archives of Materials Science and Engineering 29/2 (2008) 93-96.
  • [25] S. Rusz, K. Malanik, Refining of structure of the alloy AlMn1Cu with use of multiple severe plastic deformation, Journal of Achievements in Materials and Manufacturing Engineering 27/2 (2008) 167-178.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.