PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Different diamonds in meteorites - DaG 868 and NWA 3140 ureilites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Ureilites are a rare type of meteorites containing tiny diamond grains. In our research we used two ureilites: NWA 3140 and DaG 868. The aim of this paper is to show the non-uniformity of carbon in ureilites, especially differences of ureilitic diamonds. Design/methodology/approach: One of the best methods to examine different allotropic forms of carbon is Raman Spectroscopy. This method used to investigate diamonds provides a lot of information about diamond polytypes, crystals sizes, a level of defects and internal stresses, etc. 2D imaging was done with a Confocal Raman Imaging alpha 300 R WITec apparatus equipped with an Nd:YAG laser with 532 nm excitation. The spectra were collected with a high-sensitive confocal microscope connected to a high-throughput spectrometer equipped with a CCD camera. Mean and local elemental compositions of the samples were determined by an energy dispersive X-ray (EDX) method. A scanning electron microscope HITACHI S-3000 N was used to characterize microstructures (carbon veins) of the samples. Findings: Different diamond generations were found in ureilites in the presented research with a wide range of Raman shifts from 1309 cm -1 to 1339 cm -1. Also graphite and amorphous carbon were found. Research limitations/implications: Presented research is another step to solve the problem about diamond origin in meteorites. Practical implications: Understending diamonds and the other carbon phases in meteortites could help in manufacturing new carbon materials in laboratory. Originality/value: Authors use Raman imaging to show distribution of diamonds in ureilites, this is pioneer research, results of DaG 868 and NWA 3140 are shown for the first time.
Słowa kluczowe
Rocznik
Strony
292--297
Opis fizyczny
Bibliogr. 20 poz., rys., tabl.
Twórcy
autor
Bibliografia
  • [1] A. Karczemska, M. Szurgot, M. Kozanecki, M. I. Szynkowska, V. Ralchenko, V. V. Danilenko, P. Louda, S. Mitura, Diamond and Related Materials 17 (2008) 1179- 1185.
  • [2] A. W. Phelps, Lunar and Planetary Science (1999) 1749.
  • [3] A. Karczemska, T. Jakubowski, M. Kozanecki, I. Tszydel, A. Jauss, A. Gucsik, AIP Conference Proceedings 1163 (2009) 59-71.
  • [4] K. Fukunaga, J-I. Matsuda, Vapour-growth carbon and the origin ofcarbonaceous material in ureilites, Geochemical Journal 31 (1997) 263-273.
  • [5] M. Miyamoto, T. Takase, Y. Mitsuda, Raman spectra of various diamonds, Mineralogical Journal 16 (1993) 246-257.
  • [6] YY. M. Miyamoto, Antarct. Meteorite Research 11 (1998) 171-177.
  • [7] D. C. Hezel, L. Dubrovinsky, L. Nasdala, J. Cauzid, A. Simionovici, M. Gellissen, T. Schonbeck, Meteoritics & Planetary Science 43 (2008) 1127-1136.
  • [8] M. Ozima, M. Tatsumoto, Radiation induced diamond crystallization - origin of carbonados and its implications on meteorite nano-diamonds, Geochimica et Cosmochimica Acta 61 (1997) 369-376.
  • [9] C. Le Guillou, J. N. Rouzaud, L. Remusat, M. Bourot- Denise, A. Jambon, Coupled Raman/TEM study of an ureilite carbon phases compared to shocked graphite analogues: Implication for shock history and noble gas carriers evolution” Proceedings of the 40th Lunar and Planetary Science Conference, 2009.
  • [10] M. E. Lipschutz, Origin of diamonds in the ureilites, Science 143 (1964) 1431-1434.
  • [11] A. Bischoff, C. A. Goodrich, T. Grund, Shock-induced origin of diamonds in ureilites, Lunar and Planetary Science 1100, 1999.
  • [12] R. N. Clayton, T. K. Mayeda, Formation of ureilites by nebular processes, Geochimica et Cosmochimica Acta 52 (1988) 1313-1318.
  • [13] R. Hutchison, Meteorites, Chemical and Isotopic Synthesis Cambridge University Press, 2004.
  • [14] C. A. Goodrich, Ureilites: critical review, Meteoritics 27 (1992) 327-352.
  • [15] B. Wen, J. Zhao, M. J. Bucknum, P. Yao, T. Li, First-principles studies of diamond polytypes, Diamond & Related Materials 17 (2008) 356-364.
  • [16] Z. Wang, Y. Zhao, Ch-S. Zha, Q. Xue, R. T. Downs, X-Ray Induced Synthesis of 8H Diamond, Advanced Materials 20 (2008) 3303-3307.
  • [17] S. Osswald, V. N. Mochalin, M. Havel, G. Yushin, Y. Gogotsi, Phonon confinement effects in the Raman spectrum of nanodiamond, Physical Review B 80 (2009) 075419.
  • [18] S. Mitura, Nucleation of diamond powder particles in an RF methane plasma, Journal of Crystal Growth 80 (1987) 417-424.
  • [19] S. Mitura, Nanodiamonds, Journal of Achievements in Materials and Manufacturing Engineering 24 (2007) 166-171.
  • [20] S. Mitura, K. Mitura, P. Niedzielski, P. Louda, V. Danilenko. Nanocrystaline diamond, its synthesis, properties and applications, Journal of Achievements in Materials and Manufacturing Engineering 16 (2006) 9-16.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.