PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Predicting properties of PVD and CVD coatings based on fractal quantities describing their surface

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of the presented study was to develop a methodology giving a possibility to predict functional properties of coatings obtained in the PVD and CVD processes on tool materials, based on fractal- and multi-fractal quantities describing their surface. Design/methodology/approach: Effect of process type and deposition conditions on structure and shape of surface, as well as mechanical and service properties of the obtained coatings were determined. Methodology and detailed description of coatings topography obtained in PVD and CVD process on tool materials, including use of the fractal- and multi-fractal geometry based on images obtained on the atomic forces microscope were worked out. Relationships between fractal- and multi-fractal quantities and their mechanical and service properties were determined. Findings: The investigation results confirmed the feasibility to predict hardness and erosion resistance of coatings obtained in the magnetron PVD process, as well as the service properties defined in the cutting ability test for coatings obtained in the arc PVD process and in the high-temperature CVD process, based on the surface fractal dimension Ds value for their surface topography. Practical implications: Determining significant quantitative correlations between fractal quantities defining coatings’ surfaces, as well as their service and/or mechanical properties provides the opportunity to predict their end-user properties. Originality/value: Fractal analysis was applied for characterization of PVD and CVD coatings surfaces.
Rocznik
Strony
125--192
Opis fizyczny
Bibliogr. 156 poz., rys., tabl.
Twórcy
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, waldemar.kwasny@polsl.pl
Bibliografia
  • [1] J. Pacyna, Metal science: chosen problems, AGH, Scientifically Didactic College Publishing House, Cracow 2005.
  • [2] M. Sokovic, J. Mikuła, L.A. Dobrzański, J. Kopac, L. Kosec, P. Panjan, J. Madejski, A. Piech, Cutting properties of the Al2O3+SiC(w) based tool ceramic reinforced with the PVD and CVD wear resistant coatings, Journal of Materials Processing Technology 164-165 (2005) 924-929.
  • [3] S. J. Bull, D. G. Bhat, M. H. Staia, Properties and performance of commercial TiCN coatings, Surface and Coatings Technology 163-164 (2003) 507-514.
  • [4] W. Grzesik, Fundamentals of tool materials cutting, WNT, Warsaw 1998.
  • [5] M. Wysiecki, Contemporary tool materials, WNT, Warsaw 1997.
  • [6] J. Sieniawski, A. Cyunczyk, Solid state structure, Technical University Press, Rzeszow 2008.
  • [7] J. I. Goldstein, D. E. Newburry, P. Echlin, D. C. Joy, A. D. Romig Jr., C. E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-ray Microanalysis. A Text for Biologists, Materials Scientists, and Geologists, Plenum Press, New York 1992.
  • [8] R. Howland, L. Benatar, STM/AFM: microscopes with scanning probe – theory and practice, WIM PW, Warsaw 2002.
  • [9] M. Hebda, A. Wachal, Tribology, WNT, Warsaw 1980.
  • [10] PN EN ISO 4287: (1997) Geometrical Product Specifications (GPS), Surface texture: Profile Method - Terms, definitions and surface texture parameters.
  • [11] B. Nowicki, Multiparameter representation of surface roughness, Wear 102 (1985) 161-176.
  • [12] D. J. Whitehouse, P. Vanherck, W. De Bruin, C. A. van Luttervelt, Assessment of surface typology analysis techniques in turning, Annals of the CIRP 23/2 (1974) 265-282.
  • [13] G. P. Petropoulos, Multi-parameter analysis and modeling of engineering surface texture, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 91-100.
  • [14] J. H. Hsieh, C. Liang, C. H. Tu, W. Wu, Deposition and characterization of TiAlN and multi-layered TiN/TiAlN coatings unbalanced magnetron sputtering, Surface and Coatings Technology 108-109 (1998) 132-137.
  • [15] A. Michalski, S. Sobczak, M. Kupczyk, BN coatings obtained by the pulse plasma method, Materials Engineering 6 (2000) 349-353.
  • [16] T. Burakowski, A. Mazurkiewicz, K. Miernik, J. Smolik, J. Walkowicz, Current state and directions of developments of anti-wear technologies, Tribology 5 (2000) 877-899.
  • [17] L. A. Dobrzański, The design and manufacture of functional gradient materials, PAN, Cracow, 2007, 130-150.
  • [18] S. Mitura, A. Mitura, P. Niedzielski, P. Couvart, Nanocrystalline Diamond Coatings, Chaos, Solitions and Fractals 10/12 (1999) 2165-2176.
  • [19] Y. Sahin, G. Sur, The effect of Al O, TiN and Ti (C,N) based CVD coatings on tool wearn machining metal matrix composites, Surface and Coatings Technology 179 (2004) 349-355.
  • [20] M. K. Kazmanli, M. Urgen, A. F. Cakir, Effect of nitrogen pressure, bias voltage and substrate temperature on the phase structure of Mo–N coatings produced by cathodic arc PVD, Surface and Coatings Technology 167 (2003) 77-82.
  • [21] M. Kupczyk, Technological and functional quality of cutting tool flanks with the anti wear coatings, Technical University Press, Poznan, 1997 (in Polish).
  • [22] D. Sheeja, B. K. Tay, K. W. Leong, C. H. Lee, Effect of film thickness on the stress and adhesion of diamond-like carbon coatings, Diamond and Related Materials 11 (2002) 1643-1647.
  • [23] M. Leoni, P. Scardi, S. Rossi, L. Fedrizzi, Y. Massiani, (Ti,Cr)N and Ti/TiN PVD coatings on 304 stainless steel substrates: Texture and residual stress, Thin Solid Films 345 (1999) 263-269.
  • [24] W. J. Chou, G. P. Yu, J. H. Huang, Mechanical properties thin films coatings on 304 stainless steel substrate, Surface Coatings Technology 149 (2002) 7-13.
  • [25] L. Chen, S. Q. Wang, S. Z. Zhou, J. Li, Y. Z. Zhang, Microstructure and mechanical properties of Ti(C,N) and TiN/Ti(C,N) multilayer PVD coatings, International Journal of Refractory Metals & Hard Materials 26 (2008) 456-460.
  • [26] L. Chen, Y. Du, S. Q. Wang, J. Li, A comparative research on physical and mechanical properties of (Ti,Al)N and (Cr,Al)N PVD coatings with high Al content, International Journal of Refractory Metals & Hard Materials 25 (2007) 400-404.
  • [27] M. Dubar, A. Dubois, L. Dubar, Wear analysis of tools in cold forging, PVD versus CVD TiN coatings, Wear 259 (2005) 1109-1116.
  • [28] S. Santos, W. Sales, F. Jose da Silva, S. Franco, M. Bacci da Silva, Tribological characterisation of PVD coatings for cutting tools, Surface and Coatings Technology 184 (2004) 141-148.
  • [29] H. K. Tonshoff, C. Blawit, Development and evaluation of PACVD coated cermets tools, Surface and Coatings Technology 93 (1997) 88-92.
  • [30] L. Cunha; M. Andritschky, L. Rebouta; R. Silva, Corrosion of TiN, (TiAl)N and CrN hard coatings produced by magnetron sputtering, Thin Solid Films 317/1 (1998) 351-355.
  • [31] O. Takai; Y. Taki; T. Titagawa, Deposition of carbon nitride thin films by arc ion plating 317/1 (1998) 380-383.
  • [32] U. Krueger, H. Brändle, Enabling High Technology, Barclays Capital Global Technology Conference, 2008.
  • [33] A. Baczmanski, C. Braham, W. Seiler, N. Shiraki, Multi-reflection method and grazing incidence geometry used for stress measurement by X-ray diffraction, Surface and Coatings Technology 182 (2004) 43-54.
  • [34] C. Friedrich, G. Berg, E. Broszeit, C. Berger, Measurement of the hardness of hard coatings using a force indentation function, Thin Solid Films 290-291 (1996) 216-220.
  • [35] G. Berg, C. Friedrich, E. Broszeit, C. Berger, Scratch test measurment of tribological haed coatings in practice, Journal of Analitical Chemistry 358 (1997) 281-285.
  • [36] J. A. Thornton, The microstructure of sputter-deposited coatings, Journal of Vacuum Science Technology A 4 (1986) 3059-3065.
  • [37] A. P. Messier, A. P. Giri, R. A. Roy, Revised structure zone model for thin film physical structure, Journal of Vacuum Science and Technology 2 (1984) 500-5003.
  • [38] B. A. Movchan, A. V. Demchishin, Fizika Metallov i Metallovedenie 28 (1969) 653-656.
  • [39] K. Pawlik, Determination of the Orientation Distribution Function from Pole Figures In Arbitrarily Defined Cells, Physica Status Solidi (b) 134 (1986) 477-483.
  • [40] A. Śliwa, L.A. Dobrzański, W. Kwaśny, W. Sitek, Finite element method application for modeling of PVD coatings properties, Journal of Achievements in Materials and Manufacturing Engineering 27/2 (2008) 171-174.
  • [41] L. A. Dobrzański, A. Śliwa, W. Kwaśny, The computer simulation of internal stresses in coatings obtained by the PVD process, CAMS, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 355-358.
  • [42] B. B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science 156 (1967) 636-638.
  • [43] B. B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, New York 1983.
  • [44] N. A. Smirnova, M. Hayakawa, Fractal characteristics of the ground-observed ULF emission in relation to geomagnetic and seismic activities, Journal of Atmospheric and Solar- Terrestrial Physics 69 (2007) 1883-1841.
  • [45] K. Oleschko, Fractal Analysis of Teotihuacan, Journal of Archaeological Science 27 (2000) 1007-1016.
  • [46] T. Stojic, I. Reljin, B. Reljin, Adaptation of multifractal analysis to segmentation of microcalcifications in digital mammograms-Physica A 367 (2006) 494-508.
  • [47] J. Robbins, Fractals, Wibet 2, Warsaw 1994.
  • [48] W. Kwaśny, J. Mikuła, L.A. Dobrzański, Fractal and multifractal characteristics of coatings deposited on pure oxide ceramics, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 257-260.
  • [49] L. Wojnar, K. J. Kurzydłowski, J. Szala, Practice of image analysis, Polish Society for Stereology, Cracow 2002.
  • [50] W. Kwaśny, K. Gołombek, L. A. Dobrzański, Multifractal character of surface topography of the coatings on cemented carbides, Proceedings of the 15th IFHTSE Congress, Vienna-Austria, (2006) 532-537.
  • [51] W. Kwaśny, M. Woźniak, J. Mikuła, L. A. Dobrzański, Structure, physical properties and multifractal characteristics of the PVD and CVD coatings deposition onto the Al2O3+TiC ceramics, Journal of Computional Materials Sciences and Surface Enginering 1 (2007) 97-113.
  • [52] W. Kwaśny, L. A. Dobrzański, Structure, physical properties and fractal character of surface topography of the Ti+TiC coatings on sintered high speed steel, Journal of Materials Processing Technology 164-165 (2005) 1519-1523.
  • [53] W. Kwaśny, L. A. Dobrzański, M. Pawlyta, W. Gulbiński, Fractal nature of surface topography and physical properties of the coatings obtained using magnetron sputtering, Journal of Materials Processing Technology 157-158 (2004) 183-187.
  • [54] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, Chichester, 2003.
  • [55] W. Kwaśny, A modification of the method for determination of the surface fractal dimension and multifractal analysis, Journal of Achievements in Materials and Manufacturing Engineering 33 (2009) 115-125.
  • [56] T. Martyn, Fractal and algorithm object, Nakom, Poznań 1996 (in Polish).
  • [57] H. O. Peitgen, D. Saupe, The Sciences of Fractal Images, Springer-Verlag, New York 1988.
  • [58] B. B. Mandelbrot, Multifractal measures, especially for the geophysicist, Pure and Applied Geophysics 131 (1989) 5-42.
  • [59] J. C. Russ: Fractal dimension measurement of engineering surfaces, International Journal of Machine Tools and Manufacture 38/5-6 (1998) 567-571.
  • [60] H. Xie, J. A. Wang, E. Stein, Direct fractal measurement and multifractal properties of fracture surfaces, Physics Letters A 242 (1998) 41-50.
  • [61] B. B. Mandelbrot, D. E. Passoja, A. J. Paullay, Fractal character of fracture surfaces of metals, Nature 308 (1984) 721-722.
  • [62] U. Wendt, K. Stiebe-Lange, M. Smid, On the influence of imaging conditions and algorithms on the quantification of surface topography, Journal of Microscopy 207 (2002) 169-179.
  • [63] X. Wang, H. Zhou, Z. Wang, M. Tian, Y. Liu and Q. Kong, Fractal analysis of cyclic creep fractured surfaces of two high temperature alloys, Materials Science and Engineering A 266 (1999) 250-254.
  • [64] V. I. Betekhtin, P. N. Butenko, V. L. Gilyarov, V. E. Korsukov, A. S. Luk’yanenko, B. A. Obidov, V. E. Khartsiev, The effect of uniaxial tension on the relief geometry of the surface of an Fe77Ni1Si9B13 amorphous alloy, Technical Physics Letters 28 (2002) 26-29.
  • [65] F. Paun, E. Bouchaud, Morphology of damage cavities in aluminium alloys, International Journal Fracture 121 (2003) 43-54.
  • [66] A. Eftekhari, Fractal study of Ni-Cr-Mo alloy for dental applications: effect of beryllium, Applied Surface Science 220 (2003) 343-348.
  • [67] J. J. Mecholsky, D. E. Passoja, K. S. Feinberg-Ringel, Quantitative analysis of brittle fracture surfaces using fractal geometry, Journal of the American Ceramic Society 72 (1989) 60-65.
  • [68] J. Y. Thompson, K. J. Anusavice, B. Balasubramaniam, J. J. J. Mecholsky, Effect of microcracking on the fracture roughness and fracture surface fractal dimension of lithia-based glass-ceramics, Journal of the American Ceramic Society 78 (1995) 3045-3049.
  • [69] A. Celli, A. Tucci, L. Esposito, P. Carlo, Fractal analysis of cracks in alumina–zirconia composites, Journal of the American Ceramic Society 23 (2003) 469-479.
  • [70] C. T. Chen, J. Runt, Fractal analysis of polystyrene fracture surfaces, Polymer communications 30 (1989) 334-335.
  • [71] L. Czarnecki, A. Garbacz, J. Kurach, On the characterization of polymer concrete fracture surface- Cement & Concrete Composites 23 (2001) 399-409.
  • [72] F. Lapique, P. Meakin, J. Feder, T. Jossang, Self-affine fractal scaling in fracture surfaces generated in ethylene and propylene polymers and copolymers, Journal of the American Ceramic Society 86 (2002) 973-983.
  • [73] S. Stach, J. Cybo, J. Cwajna, S. Rozkosz, Multifractal description of fracture morphology. Full 3D analysis of a fracture surface, Materials Science-Poland 23/2 (2005) 577-584.
  • [74] C. H. Shek, G. M. Lin, K. L. Lee, J. K. L. Lai, Fractal fracture of amorphous Fe Ni V Si B alloy, Journal of Non-Crystalline Solids 224 (1998) 244-248.
  • [75] A. Provata, P. Falaras, A. Xagas, Fractal features of titanium oxide surfaces, Chemical Physics Letter 297 (1998) 484-490.
  • [76] S. L. Mills, G. C. Lees, C. M. Liauw, S. Lynch, Dispersion assessment of flame retardant filler/polymer systems using a combination of X-ray mapping and multifractal analysis, Polymer Testing 21 (2002) 941-948.
  • [77] M. A. Lebyodkin, Y. Estrin, Multifractal analysis of the Portevin-Le Chatelier effect: General approach and application to AlMg and AlMg /Al2O3 alloys, Acta Materialia 53 (2005) 3403-3413.
  • [78] C. R. Neto, K. Bube, A. Cser, A. Otto, U. Feudel, Multifractal spectrum of a laser beam melt ablation process, Physica A 344 (2004) 580-586.
  • [79] Y. Hui-Shehg, S. Xia, L. Shou-Fu, W. Young-Rui, W. Zi-Qin, Multifractal spectra of atomic force microscope images of amorphous electroless NiCuP alloy, Applied Surface Science 191 (2002) 123-127.
  • [80] W. Muller, A. Boreiko, U. SchloXmacher, X. Wang, M. N. Tahir, W. Tremel, D. Brandt, J. A. Kaandorp, H.C. Schroder, Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: Relevance to biomineralization and the formation of biogenic silica, Biomaterials 28 (2007) 4501-4511.
  • [81] I. V. Shishkovsky, Y. G. Morozov, I. Smurov, Nanofractal surface structure under laser sintering of titanium and nitinol for bone tissue engineering, Applied Surface Science 254 (2007) 1145-1149.
  • [82] C. J. Buchko, K. M. Kozloff, D. C. Martin, Surface characterization of porous, biocompatible protein polymer thin films, Biomaterials 22 (2001) 1289-1300.
  • [83] S. Blacher, V. Maquet, F. Schils, D. Martin, J. Schoenen, G. Moonen, R. Jerome, J. P. Pirard, Image analysis of the axonal ingrowth into poly(d,l-lactide) porous scaffolds in relation to the 3-D porous structure, Biomaterials 24 (2003) 1033-1040.
  • [84] K. Anselme, M. Bigerelle, B. Noel, E. Dufresne, D. Judas, A. Iost, P. Hardouin, Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses, Journal of Biomedical Materials Research 49 (2000) 155-166.
  • [85] D. Chapard, I. Degasne, G. Hure, E. Legrand, M. Audran, M. F. Basle, Image analysis measurements of roughness by texture and fractal analysis correlate with contact profilometry, Biomaterials 24 (2003) 1399-1407.
  • [86] J. L. Drummond, M. Thompson, B. J. Super, Fracture surface examination of dental ceramics using fractal analysis, Dental Materials 21 (2005) 586-589.
  • [87] R. J. Wilding, J. C. Slabbert, H. Kathree, C. P. Owen, K. Crombie, P. Delport, The use of fractal analysis to reveal remodelling in human alveolar bone following the placement of dental implants, Archives of Oral Biology 40 (1995) 61-72.
  • [88] R. Lopes, N. Betrouni, Fractal and multifractal analysis, Medical Image Analysis 13 (2009) 634-649.
  • [89] B. Świdzińska, Fractals in Computer Graphics, Press office PW, Warsaw 2000.
  • [90] http//www.fractalus.com
  • [91] S. J. Skrzypek, New Approach to Measuring Residual Macro-Stresses with the Application of the Grazing Angle X-Ray Diffraction Geometry, Scientifically Didactic College Publishing House, Cracow, 2002.
  • [92] A. C. Varmeulen, An elastic constants database and XEC calculator for use in XRD residual stress analysis, Advances of X-ray Analysis 44 (2001) 128-133.
  • [93] J. Dudognon, M. Vayer, A. Pineau, R. Erre, Grazing incidence X-ray diffraction spectra analysis of expanded austenite for implanted stainless steel, Surface & Coatings Technology 202 (2008) 5048-5054.
  • [94] D. Bobrowski, Probability in technical applications, WNT, Warsaw 1986.
  • [95] S. Chowdhury, M. T. Laugier, J. Henry, XRD stress analysis of CVD diamond coatings on SiC substrates, International Journal of Refractory Metals & Hard Materials 25 (2007) 39-45.
  • [96] E. Łągiewka, The design and manufacture of functional gradient materials, PAN, Cracow, (2007) 151-176.
  • [97] J. Bonarski, X-ray texture tomography, PAN, Cracow 2001.
  • [98] M. Ahlgren, H. Blomqvist, Influence of bias variation on residua stress and texture In TiAlN PVD coatings, Surface Coatings Technology 200 (2005) 157-160.
  • [99] U. Welzel, J. Ligot, P. Lampartem, A. C. Vermeulen, J. Mittemeijer, Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction, Journal pf Applied Crystalography 38 (2005) 1-29.
  • [100] D. Senczyk, Fundamentals of X-ray tensometry, Technical University Press, Poznan 2005.
  • [101] K. Van Hacker, L. De Buyser, J. P. Celis, P. Van Houtte, Charackterization of thin nickiel electrocoatings by the low-incident-beam-angle diffraction method, Journal of Applied Crystallography 27 (1994) 56-66.
  • [102] C. Quaeyhaegens, G. Knuyt, L. M. Stals, Study of the residual macroscopic stress in TiN coatings deposited on various steel type, Surface and Coatings Technology 74-75 (1995) 104-109.
  • [103] S. Wroński, K. Wierzbanowski, A. Baczmański, Ch. Braham, A. Lodini, Corrections for residua stress in X-Ray grazing incidence technique, Archives of Metallurgy and Materials 53 (2008) 225-281.
  • [104] C.-H. Ma, J.-H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films 418 (2002) 73-78.
  • [105] J. A. Thornton, D. W. Hoffman, Stress-related effects in thin films, Thin Solid Films 171 (1986) 5-31.
  • [106] J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films deposited by unbalanced magnetron sputtering, Surface & Coatings Technology 201 (2006) 3199-3204.
  • [107] P. W. Shum, K. Y. Li, Z. F. Zhou, Y. G. Shen, Structural and mechanical properties of titanium-aluminium-nitride films deposited by reactive close-field unbalanced magnetron sputtering, Surface & Coatings Technology 185 (2004) 245-253.
  • [108] Z.-J. Liu, P. W. Shum, Y. G. Shen, Surface growth of (Ti,Al)N thin films on smooth and rough substrates, Thin Solid Films 496 (2006) 326-332.
  • [109] P. Cichosz, Narzędzia skrawające, Wydawnictwo Naukowo-Techniczne, Warszawa 2006.
  • [110] S. Hogmark, S. Jacobson, M. Larsson, Design and evaluation of tribological coatings, Wear 246 (2000) 20-33.
  • [111] M. Fallqvist, M. Olsson, S. Rupii, Abrasive wear of multilayer Al2O3-Ti(C,N) CVD coatings on cemented carbide, Wear 263 (2007) 74-80.
  • [112] H. Xie, J.-A. Wang, M. A. Kwasniewski, Multifractal characterization of rock fracture surfaces, International Journal of Rock Mechanics and Mining Sciences (1999) 19-27.
  • [113] H. W. Zhou, H. Xie, Anisotropic characterization of rock fracture surfaces subjected to profile analysis, Physics Letters A (2004) 355-362.
  • [114] B. Liang Y. Shi R.-W. Hartel, Correlation of Rheological and Microstructural Properties in a Model Lipid System, Journal of the American Oil Chemists’ Society 85 (2008) 397-404.
  • [115] Z. Zhou, S. Liu , L. Chu, L. Gu, Fractal analysis of worn surfaces of ZnO whisker/natural rubber-styrene butadiene rubber-butyl rubber composites, Journal of Applied Polymer 90 (2003) 667-670.
  • [116] H. Xie, F. Gao, The mechanics of cracks and a statistical strength theory for rocks, International Journal of Rock Mechanics and Mining Sciences 37 (2000) 477-488.
  • [117] S. Stach, S. Roskosz, J. Cybo, J. Cwajna, Multifractal description of fracture morphology: investigation of the fractures of sintered carbides, Materials Characterization 51 (2003) 87-93.
  • [118] Y. Ju, L Sudak, H. Xie, Study on stress wave propagation in fractured rocks with fractal joint surfaces, International Journal of Solids and Structures 44 (2007) 4256-4271.
  • [119] Y. Wang, B. Du, J. Liu, J. Lu, B. Shi, H Tang, Surface analysis of cryofixation-vacuum-freeze-dried polyaluminum chloride–humic acid (PACl–HA) flocs, Journal of Colloid and Interface Science 316 (2007) 457-466.
  • [120] S. G. Wang, The dependence of the fractal dimension of fractured surface on material in three dimensions, Physica B: Physics of Condensed Matter 348 (2004) 183-189.
  • [121] M. F. Barnsley, Fractals Everywhere, AP Professional Boston, 1988.
  • [122] E. Ott, Chaos w układach dynamicznych, WNT, Warsaw 1997.
  • [123] A. B. Chhabra, R. V. Jensen, Direct determination of the f(α) singularity spectrum, Physical Review Letters 62 (1989) 1327-1330.
  • [124] A. B. Chhabra, C. Meneveau, R.V. Jensen, K.R. Sreenivasan, Direct determination of the f(α) singularity spectrum and its application to fully developed turbulence, Physical Review A 40 (1989) 5284-5294.
  • [125] H.-O. Peitgen, H. Jurgens, D. Saupe, Chaos and Fractals. New Frontiers of Science, Springer-Verlag, New York, 1992.
  • [126] X. Sun, Z. Fu, Z. Wu, Multifractal analysis and scaling range of ZnO AFM images, Physica A 311 (2002) 327-338.
  • [127] C. Liu, X.L. Jiang, T. Liu, L. Zhao, W. X. Zhou, W. K. Yuan, Multifractal analysis of the fracture surfaces of foamed polypropylene/polyethylene blends, Applied Surface Science 255 (2009) 4239-4245.
  • [128] W. Kwaśny, K. Gołombek, L. A. Dobrzański, M. Pawlyta, Modeling of surface with require geometrical features and their fractal and multifractal characteristic, Materials Engineering 5/153 (2006) 1101-1106.
  • [129] W. Kwaśny, L.A. Dobrzański, Fractal nature of surface topography and physical properties of the TiN coatings obtained in the PVD process, Proceedings of the 12th Scientific International Conference „Achievements in Mechanical and Materials Engineering AMME’2003”, Zakopane, (2003) 551-556.
  • [130] D. Pakuła, L.A. Dobrzański, K. Gołombeka, M. Pancielejko, A. Kriz, Structure and properties of the Si3N4 nitride ceramics with hard wear resistant coatings, Journal of Materials Processing Technology 157-158 (2004) 388-393.
  • [131] L. A. Dobrzański, D. Pakuła, Comparison of the structure and properties of the PVD and CVD coatings deposited on nitride tool ceramics, Journal of Materials Processing Technology 164-165 (2005) 832-842.
  • [132] L. A. Dobrzański, J. Mikuła, The structure and functional properties of PVD and CVD coated Al2O3 + ZrO2 oxide tool ceramics, Journal of Materials Processing Technology 167 (2005) 438-446.
  • [133] L. A. Dobrzański, J. Mikuła, Structure and properties of PVD and CVD coated Al2O3 + TiC mixed, oxide tool ceramics for dry on high speed cutting processes, Journal of Materials Processing Technology 164-165 (2005) 822-831.
  • [134] Y. Fu, H. Du, S. Zhang, Y.W. Gu, Stress and surface morphology of TiNiCu thin films: effect of annealing temperature, Surface and Coatings Technology 198 (2005) 389-394.
  • [135] Y. Jin, W. Wu, L. Li, J. Chen, J. Zhang, Y. Zuo, J. Fu, Effect of sputtering power on surface topography of dc magnetron sputtered Ti thin films observed by AFM, Applied Surface Science 255 (2009) 4673-4679.
  • [136] A. P. Xagas, E. Androulaki, A. Hiskia, P. Falaras, Preparation, fractal surface morphology and photocatalytic properties of TiO2 films. Thin Solid FilmsVolume 357/2 15 (1999) 173-178.
  • [137] T. Silk, Qi Hong, Jüri Tamm and Richard G. Compton, AFM studies of polypyrrole film surface morphology II. Roughness characterization by the fractal dimension analysis, Synthetic Metals 93/1, (1998) 65-71.
  • [138] X. Sun, Z. Fu, Z. Wu, Fractal processing of AFM images of rough ZnO films. Materials Characterization 48 (2002) 169-175.
  • [139] G. Reisel, R.B. Heimann, Correlation between surface roughness of plasma-sprayed chromium oxide coatings and powder grain size distribution: a fractal approach. Surface & Coatings Technology 185 (2004) 215-221.
  • [140] D. Risovic, S. Mahovic, M. Gojo, On correlation between fractal dimension and profilometric parameters in characterization of surface topographies, Applied Surface Science 255 (2009) 4283-4288.
  • [141] Z. W. Chen, J. K. L. Lai, C. H. Shek, Multifractal spectra of scanning electron microscope images of SnO2 thin films prepared by pulsed laser deposition, Physics Letters A 345 (2005) 218-223.
  • [142] K. T. Lam, L. W. Ji, Fractal analysis of InGaN self-assemble quantum dots grown by MOCVD. Microelectronics Journal 38/8-9 (2007) 905-909.
  • [143] S. Yang, Z. He, Q. Li, D. Zhu, J. Gong, Diamond films with preferred <110> texture by hot filament CVD at low pressure, Diamond and Related Materials 17 (2008) 2075-2079.
  • [144] R. Shishkov, G. Kirilova, D. Dochev, M. Balcheva, Obtaining of (Ti,Me)N films by magnetron sputtering in a vacuum furnace, Proceedings of the 8th Scientific International Conference „Achievements in Mechanical and Materials Engineering AMME’1999”, Rydzyna, (1999) 531-534.
  • [145] C. Blawert, D. Manova, M. Störmer, J. W. Gerlach, W. Dietzel, S. Mändl, Correlation between texture and corrosion properties of magnesium coatings produced by PVD, Surface & Coatings Technology 202 (2008) 2236-2240.
  • [146] P. I. Oden, A. Majumdar, B. Bhushan, A. Padmanabhan, J.J. Graham, AFM Imaging, Roughness Analysis and Contact Mechanics of Magnetic Tape and Head Surfaces, Journal of Tribology 114 (1992) 666-674.
  • [147] J. Krim, I. Heyvaert, C. Van Haesendonck, Y. Bruynseraede, Scanning tunneling microscopy observation of self-affine fractal roughness in ion-bombarded film surfaces, Physical Reviev Archive 70 (1993) 57 60.
  • [148] J. M. Gómez-Rodríguez, A. Asenjo, R. C. Salvarezza, A. M. Baró, Measuring the fractal dimension with STM: application to vacuum-evaporated gold, Journal Physical Chemistry 96/1 (1992) 347-350.
  • [149] J. M. Williams, T. P. Beebe, Analysis of fractal surfaces using scanning probe microscopy and multiple-image variography. 1. Some general considerations, Journal Physical Chemistry 97/23 (1993) 6249-6254.
  • [150] N. Almqvist, Fractal analysis of scanning probe microscopy images, Surface Science 355 (1996) 221-228.
  • [151] J. Barkoulas, N. Travlos, Chaos in an emerging capital market? The case of the Athens Stock Exchange.Applied Financial Economics 8 (1998) 231-243.
  • [152] V. K. Yeragani, K. Srinivasan, S. Vempati, R. Pohl, R. Balon, Fractal dimension of heart rate time series: an effective measure of autonomic function. Journal Applied Physiology 75 (1993) 2429-2438.
  • [153] J. B. Bassingthwaighte, G. M. Raymond, Evaluation of the dispersional analysis method for fractal time series. Annals of Biomedical Engineering 23 (1995) 491-505.
  • [154] D. Raoufi, H. Reza Fallah, A. Kiasatpour, A. Rozatian, Multifractal analysis of ITO thin films prepared by electron beam deposition method, Applied Surface Science 254/7 (2008) 2168-2173.
  • [155] S. Gan, Q. Zhou, X. Xu, Y. Hong, Y. Liu, S. Fu, Study on the surface roughness of substrate with multi-fractal spectrum. Microelectronic Engineering 84/5-8 (2007) 1806-1809.
  • [156] A. Chaudhari, Y. Sanders Ch-Ch,S. Lee, Multifractal analysis of growing surface, Applied Surface Science 238 (2004) 513-517.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0021-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.