PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

FEM modelling of internal stresses in PVD coated FGM

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The general topic of this paper is problem of determining the internal stresses of composite gradient tool materials with the use of finite element method (FEM). The chemical composition of the investigated materials’ core is corresponding to the M2 high-speed steel and was reinforced with the WC and TiC type hard carbide phases with the growing portions of these phases in the outward direction from the core to the surface. Such composed material was sintered, heat treated and deposited appropriately with (Ti,Al)N or Ti(C,N) gradient coatings. Design/methodology/approach: Modelling of stresses was performed with the help of finite element method in PATRAN environment, and the experimental values of stresses were determined basing on the X-ray diffraction patterns. The computer simulation results were compared with the experimental results. Findings: The presented model meets the initial criteria, which gives ground to the assumption about its usability for determining the stresses in coatings, employing the finite element method using the PATRAN software. The computer simulation results correlate with the experimental results. Research limitations/implications: It was confirmed that using of finite element method in stresses modelling occurring in gradient- structured materials can be a way for reducing the investigation costs. In order to reach this purpose, it was used in the paper a simplified model of gradient- structured materials with division on zones with established physical and mechanical properties. Results reached in this way are satisfying and in slight degree differ from results reached by experimental method. However for achieving better calculation accuracy in further researches it should be developed given model which was presented in this paper. Originality/value: Nowadays the computer simulation is very popular and it is based on the finite element method, which allows to better understand the interdependence between parameters of process and choosing optimal solution. The possibility of application faster and faster calculation machines and coming into being many software make possible the creation of more precise models and more adequate ones to reality.
Rocznik
Strony
71--78
Opis fizyczny
Bibliogr. 24 poz., rys., tabl.
Twórcy
autor
autor
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, agata.sliwa@polsl.pl
Bibliografia
  • [1] J. Mikuła G. Matula, K. Gołombek, L.A. Dobrzański, Sintered composite gradient tool materials, Archives of Materials Science and Engineering 32/1 (2008) 25-28.
  • [2] G. Matula, K. Gołombek, J. Mikuła, L.A. Dobrzański, Structure of sintered gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2009) 23-28.
  • [3] L. A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Gołombek, T. Gawarecki, Hard gradient (Ti,Al,Si)N coating deposited on composite tool materials, Archives of Materials Science and Engineering 36/2 (2009) 69-75.
  • [4] M. Rosso, Properties of coatings on sintered iron alloys, Journal of Achievements in Materials and Manufacturing Engineering 19/1 (2006) 35-41.
  • [5] R. Manaila, A. Devenyi, D. Biro, L. David, P. B. Barna, A. Kovacs, Multilayer TiAlN coatings with composition gradient, Surface and Coatings Technology 151-52 (2002) 21-25.
  • [6] Z. Dyląg, A. Jakubowicz, Z. Orłoś, Strength of materials, WNT, Warsaw, 1996.
  • [7] S. Łączka, Introduction to the ANSYS Finite element system, Cracow Technical University Press, Cracow, 1999.
  • [8] T. Burakowski, T. Wierzchon, Engineering of metal surface, WNT, Warsaw, 1995.
  • [9] O. C. Zienkiewicz, R. L. Taylor, Finite Element Method, Butterworth Heinemann, London, 2000.
  • [10] W. Walke, Z. Paszenda, Numerical analysis of three-layer vessel stent made from Cr-Ni-Mo steel and tantalum, International Journal of Computational Materials Science and Surface Engineering 1/1 (2007) 129-137.
  • [11] J. Grum, R. Sturm, Influence of laser surface melt – hardering conditions on residual stress in thin plates, Surface and Coating Technology 100-101 (1998) 455-458.
  • [12] T. Da Silva Botelho, E. Bayraktar, G. Inglebert, Experimental and finite element analysis of spring back in sheet metal forming, International Journal of Computational Materials Science and Surface Engineering 1/2 (2007) 197-213.
  • [13] I. Son, G. Jin, J. Lee, Y. Im, Load predictions for non-isothermal ECAE by finite element analyses, International Journal of Computational Materials Science and Surface Engineering 1/2 (2007) 242-258.
  • [14] S. Ju, C. Fan, G. Wu, Three-dimensional finite element soft steel Boltem connections, Engineering Structures 26 (2004) 403-413.
  • [15] S. Thipprakmas, M. Jin, K. Tomokazu, Y. Katsuhiro, M. Murakawa, Prediction of Fine blanked surface characteristics using the finite element method (FEM), Journal of Materials Processing Technology 198 (2008) 391-398.
  • [16] Z. Tong, Y. Zhang, H. Hua, Dynamic behavior and sound transmission analysis of a fluid-structure coupled system using the direct-BEM/FEM, Journal of Sound and Vibration 299 (2007) 645-655.
  • [17] Y. Kim, S. Yaang, D. Shan, S. Choi, S. Lee, B. You, Three-Dimensional Rigid-Plastic FEM Simulation of Metal Forming Processes, Journal of Materials Engineering and Performance 15/3 (2006) 275-279.
  • [18] A. Śliwa, L. A. Dobrzański, W. Kwaśny, W. Sitek, Finite Element Method application for modeling of PVD coatings properties, Journal of Achievements in Materials and Manufacturing Engineering 27/2 (2008) 171-175.
  • [19] L. A. Dobrzański, A. Śliwa, W. Sitek, W. Kwaśny, The computer simulation of critical compressive stresses on the PVD coatings,International Journal of Computational Materials Science and Surface Engineering1/1 (2007) 28-39.
  • [20] L. A. Dobrzański, A. Śliwa, T. Tański, Finite Element Method application for modelling of mechanical properties, Archives of Computational Materials Science and Surface Engineering 1/1 (2009) 25-28.
  • [21] A. Śliwa, L. A. Dobrzański, W. Kwaśny, W. Sitek, The computer simulation of internal stresses on the PVD coatings, Archives of Computational Materials Science and Surface Engineering 1/3 (2009) 183-188.
  • [22] L. A. Dobrzański, A. Śliwa, T. Tański, Numerical simulation model for the determination of hardness for casting the magnesium alloys MCMgAl6Zn1, Archives of Materials Science 29/3 (2008) 118-124.
  • [23] M. Kupczyk, Technological and functional quality of cutting tool flanks with the anti wear coatings, Poznan, 1997, (in Polish).
  • [24] S. J. Skrzypek, New opportunities in measurement of materials internal macrostresses by the use of diffraction of x-ray radiation in glancing angle geometry, Scientifically Didactic College Publishing House, Cracow, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0020-0089
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.