PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of textile-reinforced carbon fibre aluminium composites manufactured with gas pressure infiltration methods

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of his paper is to show potential of textile-reinforced carbon fibre aluminium composite with advantage of the lightweight construction of structural components subjected to thermo-mechanical stress. Design/methodology/approach: The manufacture of specimens of the carbon fibre-reinforced aluminium was realised with the aid of an advanced differential gas pressure infiltration technique, which was developed at ILK, TU Dresden. Findings: The gas pressure infiltration technology enables to fabricate complex carbon aluminium composites with fibre or textile reinforcement using moulds of graphite, but in future development the optimization of infiltration process is required. The load-adapted combination of 3D reinforced semi-finished fibre products (textile preforms) made from carbon fibres (CF) with aluminium light metal alloys (Al) offers a considerable lightweight construction potential, which up to now has not been exploited. Research limitations/implications: Gas pressure infiltration technology enables to fabricate complex carbon aluminium composites with fibre or textile reinforcement using precision moulds of graphite, but in future development the optimization of infiltration process is required. Practical implications: Load-adapted CF/Al-MMC, due to the relatively high stiffness and strength of the metal matrix, allow the introduction of extremely high forces, thereby enabling a much better exploitation of the existing lightweight construction potential of this material in comparison to other composite materials. Originality/value: Constantly rising demands on extremely stressed lightweight structures, particularly in traffic engineering as well as in machine building and plant engineering, increasingly require the use of endless fibre-reinforced composite materials which, due to their selectively adaptable characteristics profiles, are clearly superior to conventional monolithic materials.
Rocznik
Strony
177--183
Opis fizyczny
Bibliogr. 32 poz., rys., tabl.
Twórcy
autor
autor
autor
autor
autor
  • Institute of Lightweight Structures and Polymer Technology (ILK), Technische Universität Dresden, Germany, acz@ilk.mw.tu-dresden.de
Bibliografia
  • [1] W. Hufenbach; A. Langkamp, M. Andrich, Novel fabrication technologies for carbon fibre reinforced magnesium, Composites 3/7 (2003) 271-274.
  • [2] Training in Aluminium Application Technologies (TALAT), Version 2.0 – CD-ROM, 199, EAA, Brussels.
  • [3] M. Adamiak, Selected properties of the aluminium alloy base composites reinforced with intermetallic particles, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 43-47.
  • [4] G. Palumbo, L. Tricarico, Numerical and experimental investigations on the warm deep drawing process of circular aluminium alloy specimens, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 111-118.
  • [5] J. Wieczorek, A. Dolata-Grosz, M. Dyzia, J. Śleziona, Tribological properties of aluminium matrix composites reinforcement with intermetallic phases, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 58-62.
  • [6] M. Kciuk, The influence of heat treatment on the structure, mechanical properties and corrosion resistance of aluminium alloy AlMg1Si1, Journal of Achievements in Materials and Manufacturing Engineering 16 (2006) 51-56.
  • [7] M. Kciuk, Structure, mechanical properties and corrosion resistance of AlMg5 alloy, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 185-188.
  • [8] L. A. Dobrzański, T. Tański, L. Cizek, Influence of Al addition on structure of magnesium casting alloys, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 221-224.
  • [9] L. A. Dobrzański, T. Tański, L. Cizek, Influence of Al addition on structure of magnesium casting alloys, Journal of Achievements in Materials and Manufacturing Engineering 19/2 (2006) 49-55.
  • [10] W. Hufenbach, L. A. Dobrzański, M. Gude, J. Konieczny, A. Czulak, Optimisation of the rivet joints of the CFRP composite material and aluminium alloy, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 119-122.
  • [11] J. Szajnar, T. Wróbel, Inoculation of primary structure of pure aluminium, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 51-54.
  • [12] A. Fayza, A. Zghal, E. Bayraktar, Analytic and experimental study for light alloy aluminium panels under compression, Journal of Achievements in Materials and Manufacturing Engineering 25/1 (2007) 19-22.
  • [13] J. Szajnar, T. Wróbel, Methods of inoculation of pure aluminium structure, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 95-98.
  • [14] A. Włodarczyk-Fligier, L. A. Dobrzański, M. Kremzer, M. Adamiak, Manufacturing of aluminium matrix composite materials reinforced by Al2O3 particles, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 99-102.
  • [15] M. Dyzia, A. Dolata-Grosz, J. Śleziona, Influence of modification on structure, fluidity and strength of 226D aluminium alloy, Archives of Foundry Engineering 8/3 (2008) 13-16.
  • [16] M. Dyzia, A. Dolata-Grosz, J. Śleziona, Infiltration test of carbon fibres textile by modiefied AlSi9Cu(Fe) alloy, Composites (2009) (in print).
  • [17] M. Dyzia, A. Dolata-Grosz, J. Śleziona, Fabrication and structure of Al-carbon fibres composites obtained by infiltration, Materials Engineering (2009) (in print).
  • [18] M. Dyzia, A. Dolata-Grosz, J. Śleziona, Technological aspects of Al-carbon fibres composites fabrication-selection of matrix material, Materials Engineering (2009) (in print).
  • [19] W. Hufenbach, M. Andrich, A. Langkamp, A. Czulak, Precision moulds of graphite for fabrication of carbon fibre reinforced magnesium, Proceedings of the 12th Scientific International Conference „Achievements in Mechanical and Materials Engineering” AMME’2003, Gliwice–Zakopane, 2003, 381-384.
  • [20] H.-M. Cheng, B.-L. Zhou, A. Kitahara, S. Akiyama, K. Kobayashi, Effect of silicon additions on characteristics of carbon fibre reinforced aluminum composites during thermal exposure, Journal of Materials Research 11/5 (1996) 1284-1292.
  • [21] T. Etter, M. Papakyriacou, P. Schulz, P. J. Uggowitzer, Physical properties of graphite / aluminium composites produced by Gas Pressure Infiltration method, Carbon 41/5 (2003) 1017-1024.
  • [22] A. Daoud, Microstructure and tensile properties of 2014 Al alloy reinforced with continuous carbon fibres manufactured by gas pressure infiltration, Materials Science and Engineering A 391/1-2 (2005) 114-120.
  • [23] S. N. Patankar, C. Suryanarayana, D. Blackketter, F.H. Froes, Thermally induced residual stresses in carbon fibre-reinforced aluminium-matrix composites, Journal of Materials Science Letters 11 (1992) 947-949.
  • [24] J. W. Kaczmar, K. Pietrzak, W. Wołościński, The production and application of metal matrix composite materials, Journal of Materials Processing Technology 106 (2000) 58-67.
  • [25] S. Kumar, V. Santhosh Bai, V. Seshu, T. Rajasekharan, Aluminium matrix composites by pressureless infiltration: the metallurgical and physical properties, Journal of Physics D: Applied Physics 41/10 (2008) 105403.
  • [26] K. U. Kainer, Alloying Effects on the Properties of Alumina- Magnesium- Composites, in: Metal Matrix Composites – Processing Microstructure and Properties, Risø National Laboratory, Roskilde, 1991, 429-434.
  • [27] R. F. Tressler, Interfaces in Oxide Reinforced Metals, in: Interfaces in Metal Matrix Composites, Academic Press, New York, 1974, 285.
  • [28] L. J. Ebert, P. K. Wright, Mechanical Aspects of the Interface, in: Interfaces in Metal Matrix Composites, Academic Press, New York, 1974, 31.
  • [29] K. K. Chawla, Composite Materials: Science and Engineering, Springer-Verlag, New York, 1998.
  • [30] C. M. Friend, The effect of matrix properties on reinforcement in short Alumina fibre-aluminum metal matrix composites, Journal of Materials Science 22 (1987) 3005-3010.
  • [31] F. J. Humphreys, Deformation and annealing mechanisms in discontinuously reinforced metal-matrix composites, Mechanical and Physical Behavior of Metallic and Ceramic Composites, Proceedings of the 9th Risø International Symposium “Metallurgy and Materials Science”, Risø, 1988.
  • [32] F. J. Humphreys, A. Basu, M.R. Djazeb, The microstructure and strength of particulate metal-matrix composites, Proceedings of the 12th Risø International Symposium “Materials Science, Metal-Matrix Composites – Processing, Microstructure and Properties”, Roskilde, 1991, 51-66.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0020-0076
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.