PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of isothermal bainitic transformation temperature on retained austenite fraction in C-Mn-Si-Al-Nb-Ti TRIP-type steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to determine the influence of isothermal bainitic transformation temperature on a fraction of retained austenite for a new-developed C-Mn-Si-Al-Nb-Ti TRIP-type steel. Design/methodology/approach: The thermo-mechanical processing was realized in a multi-stage compression test by the use of the Gleeble 3800 thermomechanical simulator. The steel was subjected to six variants of processing with an isothermal bainitic transformation temperature in a range from 250 to 500°C. Identification of phase composition was achieved using microstructure observations and X-ray diffraction. To determine the fraction of retained austenite the Rietveld method was applied. Findings: The maximum fraction of retained austenite equal up to 16% can be obtained for the temperatures of isothermal bainitic transformation from 400 to 450°C, while the maximum carbon content in the ă phase equal 1.5 wt.% is present at the temperature of 350°C. Below 350°C due to high Ms temperature, the largest grains of retained austenite located in the ferritic matrix transform to marteniste. In a temperature range from 350 to 450°C, the Msă temperature has a negative value, stabilizing the retained austenite. Research limitations/implications: To determine in detail the influence of isothermal bainitic transformation conditions on a fraction of retained austenite, the knowledge of the effect of isothermal holding time is also important. Practical implications: The obtained microstructures and especially retained austenite fraction dependent on an isothermal bainitic transformation temperature can be useful in optimization of thermo-mechanical processing conditions of C-Mn-Si-Al TRIP-type steels. Originality/value: Combined colour etching and X-ray diffraction methods were applied for microstructure identification of modern group of TRIP steels predicted to use in the automotive industry.
Rocznik
Strony
169--176
Opis fizyczny
Bibliogr. 37 poz., rys., tabl.
Twórcy
autor
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, adam.grajcar@polsl.pl
Bibliografia
  • [1] V. Flaxa, J. Shaw, Material applications in ULSAB-AVC, Steel Grips 1/4 (2003) 255-261.
  • [2] M. Mehrkens, J. Fröber, Modern multi-phase steels in the BMW of the Porsche Cayenne, Steel Grips 1/4 (2003) 249-251.
  • [3] R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry, Archives of Civil and Mechanical Engineering 8/2 (2008) 103-117.
  • [4] A. K. Lis, B. Gajda, Modelling of the DP and TRIP microstructure in the CMnAlSi automotive steel, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 127-134.
  • [5] J. Adamczyk, A. Grajcar, Structure and mechanical properties of DP-type and TRIP-type sheets obtained after the thermomechanical processing, Journal of Materials Processing Technology 162-163 (2005) 267-274.
  • [6] A. Basuki, E. Aernoudt, Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite, Journal of Materials Processing Technology 89-90 (1999) 37-43.
  • [7] A. Grajcar, Structural and mechanical behaviour of TRIP steel in hot-working conditions, Journal of Achievements in Materials and Manufacturing Engineering 30/1 (2008) 27-34.
  • [8] B. C. De Cooman, Structure – properties relationship in TRIP steels containing carbide–free bainite, Current Opinion in Solid State and Materials Science 8 (2004) 285-303.
  • [9] A. Grajcar, Hot-working in the γ+α region of TRIP-aided microalloyed steel, Archives of Materials Science and Engineering 28/11 (2007) 743-750.
  • [10] A. Grajcar, Determination of the stability of retained austenite in TRIP-aided bainitic steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 111-114.
  • [11] B. Gajda, A. K. Lis, Intercritical annealing with isothermal holding of TRIP CMnAlSi steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 439-442.
  • [12] W. Shi, L. Li, Ch. Yang, R. Y. Fu, L. Wang, P. Wollants, Strain-induced transformation of retained austenite in low-carbon low-silicon TRIP steel containing aluminum and vanadium, Materials Science and Engineering A 429 (2006) 247-251.
  • [13] Y. K. Lee, H. C. Shin, Y. C. Jang, S. H. Kim, C. S. Choi, Effect of isothermal transformation temperature on amount of retained austenite and its thermal stability in a bainitic Fe-3%Si-0.45%C-X steel, Scipta Materialia 47 (2002) 805-809.
  • [14] H. B. Ryu, J. G. Speer, J. P. Wise, Effect of thermomechanical processing on the retained austenite content in a Si-Mn Transformation-Induced-Plasticity steel, Metallurgical and Materials Transactions A 33A (2002) 2811-2816.
  • [15] G. N. Haidemenopoulos, A. I. Katsamas, N. Aravas, Stability and constitutive modelling in multiphase TRIP steels, Steel Research International 77 (2006) 720-726.
  • [16] I. B. Timokhina, P. D. Hodgson, E. V. Pereloma, Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation–induced–plasticity steel, Metallurgical and Materials Transactions A 34A (2003) 1599–1609.
  • [17] K. W. Andrews, Empirical formulae for the calculation of some transformation temperatures, Journal of the Iron and Steel Institute 7 (1965) 721-727.
  • [18] M. V. Li, D. V. Niebuhr, L. L. Meekisho, D. G. Atteridge, A computational model for the prediction of steel hardenability, Metallurgical and Materials Transactions B 29B (2003) 1599-1609.
  • [19] B. Mintz, The influence of aluminium on the strength and impact properties of steel, International Conference on TRIP-aided High Strength Ferrous Alloys, Ghent, 2002, 379-382.
  • [20] G. Haidemenopoulous, K. Papadimitriou, Retained austenite and mechanical properties in bainite transformed low alloy steels, Steel Research 66/10 (1995) 433-438.
  • [21] Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, Y. Morii, Tensile behaviour of TRIP-aided multi-phase steels studied by in situ neutron diffraction, Acta Materialia 52 (2004) 5737-5745.
  • [22] H. Matsuda, F. Kitano, K. Hasegawa, T. Urabe, Y. Hosoya, Metallurgy of continuously annealed high strength TRIP steel sweet, Steel Research 73 (2002) 211-217.
  • [23] L. Zhao, O. Tegus, E. Brück, N. H. Van Dijk, S. O. Kruijver, J. Sietsma, S. Van der Zwaag, Magnetic determination of the thermal stability of retained austenite in TRIP steel, International Conference on TRIP-Aided High Strength Ferrous Alloys, Ghent, 2002, 71-74.
  • [24] S. Van der Zwaag, L. Zhao, S. O. Kruijver, J. Sietsma, Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels, ISIJ International 42/12 (2002) 1565-1570.
  • [25] O. Muransky, P. Hornak, P. Lukas, J. Zrnik, P. Sittner, Investigation of retained austenite stability in Mn-Si TRIP steel in tensile deformation condition, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 26-30.
  • [26] L. Zhao, N. H. Van Dijk, E. Brück, J. Sietsma, S. Van der Zwaag, Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels, Materials Science and Engineering A 313 (2001) 145-152.
  • [27] R. Petrov, L. Kestens, Y. Houbaert, Microstructure and microtexture evolution of a TRIP-assisted steel after small deformation studied by EBSD technique, Materials Science Forum 550 (2007) 1-6.
  • [28] B. L. Averbach, M. Cohen, X-Ray determination of retained austenite by integrated intensities, Transactions A.I.M.E. 176 (1948) 401-408.
  • [29] Z. C. Wang, S. J. Kim, C. G. Lee, T. H. Lee, Bake-hardening behaviour of cold-rolled CMnSi and CMnSiCu TRIP-aided steel sheets, Journal of Materials Processing Technology 151 (2004) 141-145.
  • [30] Z. Li, D. Wu, Effects of hot deformation and subsequent austempering on the mechanical properties of Si-Mn TRIP steels, ISIJ International 46/1 (2006) 121-128.
  • [31] H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography 2 (1969) 65-71.
  • [32] B. S. Seong, E. J. Shin, Y. S. Han, C. H. Lee, Y. J. Kim, S. J. Kim, Effect of retained austenite and solute carbon on the mechanical properties in TRIP steels, Physica B 350 (2004) 467-469.
  • [33] H. Krztoń, Rietveld’s method and its applications, IMŻ Reports 3-4 (1999) 42-46 (in Polish).
  • [34] H. Krztoń, D. Kolesnikow, J. Paduch, R. Molenda, Processing and properties of sinters prepared from 316L steel nanopowders, Journal of Achievements in Materials and Manufacturing Engineering 21/1 (2007) 73-76.
  • [35] R. A. Young, The Rietveld Method, International Union of Crystallography, Oxford University Press, 1993.
  • [36] A. Grajcar, M. Opiela, Influence of plastic deformation on CCT-diagrams of low-carbon and medium-carbon TRIP steels, Journal of Achievements in Materials and Manufacturing Engineering 29/1 (2008) 71-78.
  • [37] SIROQUANTTM Quantitative XRD Software, User’s Guide and Reference, Version 2.5 for Windows, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0020-0075
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.