PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of sintering on Y2O3-doped CeO2

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Having high electrical conductivity, Y2O3-doped CeO2 is a good candidate for various high temperature electrochemical devices, such as solid oxide fuel cells and oxygen gas sensor. However, its inferior mechanical properties compared to its competitors, e.g. ZrO2-based electrolytes, has restricted its usage. Design/methodology/approach: The present work evaluates the sintering behavior and mechanical properties of CeO2, and aims to enhance the mechanical properties and sinterability while restricting the grain growth by doping with Y2O3. Findings: The relative density, rather than the Y2O3 concentration, was the most important factor that affected the mechanical properties of CeO2. Increase of density resulted in higher hardness and elastic modulus, and lower the fracture toughness of CeO2. In the optimum condition, the KIC of 5.1 MPa.m1/2, nanohardness of 13.0 GPa, and elastic modulus of 371.5 GPa were obtained for the undoped CeO2 (density = 98.00%) sintered at 1700°C. Research limitations/implications: This study does not include sintering at higher temperatures. It is also worth investigating formation of oxygen vacancy or Ce2O3 material in the Y2O3-doped CeO2. Practical implications: It is noteworthy that in this study, the high temperature calcination of mixed powders is avoided in order to keep yitria as a second phase (not as a solute) in the ceria matrix. This enables yitria to be more effective to suppress the grain growth. Originality/value: The objectives are to improve the mechanical properties and to reveal the effects of various parameters, such as density, grain size, and yitria doping on the nano/micro indentation behavior of ceria material.
Rocznik
Strony
130--136
Opis fizyczny
Bibliogr. 35 poz., rys., tabl.
Twórcy
autor
  • School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore, mmjtan@ntu.edu.sg
Bibliografia
  • [1] N. Osada, H. Uchida, Polarization behavior of SDC cathode with highly dispersed Ni catalysts for solid oxide electrolysis cells, Journal of the Electrochemical Society 153 (2006) 816-820.
  • [2] J. W. Fergus, Electrolytes for solid oxide fuel cells, Journal of Power Sources 162 (2006) 30-40.
  • [3] N. Izu, W. Shin, Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder, Sensors and Actuators B 93 (2003) 449-453.
  • [4] A. Krell, A new look at size and load effects in the hardness of ceramics, Materials Science and Engineering A 245 (1998) 277-284.
  • [5] M. H. Paydar, A. M. Hadiyan, K. Shiamnoe, The effects of zirconia addition on sintering behavior, mechanical properties and ion conductivity of BICUVOX.1 material, Journal of European Ceramic Society 21 (2001) 1825-1829.
  • [6] T. S. Zhang, J. Ma, Different conduction behaviors of grain boundaries in SiO2-containing 8YSZ and CGO20 electrolytes, Solid State Ionics 177 (2006) 1227-1235.
  • [7] T. Zhang, P. Hing, Sintering study on commercial CeO2 powder with small amount of MnO2 doping, Materials Letters 57 (2002) 507-512.
  • [8] J. S. Lee, K. H. Choi, Effects of gallia additions on sintering behavior of gadolinia-doped ceria, Matterials Research Bulletin 39 ( 2004) 2033-2004.
  • [9] T. Zhang, P. Hing, Densification, microstructure and grain growth in the CeO2-Fe2O3 system (0 <= Fe/Ce <= 20%), Journal of European Ceramic Society 21 (2001) 2221-2228.
  • [10] P. L. Chen, I. W. Chen, Grain growth in CeO2: dopant effects, defect mechanism, and solute drag, Journal of American Ceramic Society 79 (1996) 1793-17800.
  • [11] E. Ruiz-Trejo, A. Benitez-Rico, Nanoparticles and nanograin-sized Y-doped CeO2 ceramics, Journal of the Electrochemical Society 154 (2007) 258-262.
  • [12] D. Upadhyaya, S. Ramanathan, Solute effect of grain growth in ceria ceramics, Journal of European Ceramic Society 14 (1994) 337-341.
  • [13] J. Markman, A. Tschope, Low temperature processing of dense nanocrystalline yitrium-doped cerium oxide ceramics, Acta Materialia 50 (2002) 1433-1440.
  • [14] T. Ishida, F. Iguchi, Fracture properties of (CeO2)1-x(RO1.5) (R=Y, Gd, and Sm; x = 0.02-0.2) ceramics, Solid State Ionics 176 (2005) 2417-2421.
  • [15] Y. Wang, K. L. Duncan, Effects of reduction treatment on the fracture properties of cerium oxide, Journal of American Ceramic Society 90 (2007) 3908-3917.
  • [16] K. L. Duncan, Y. Wang, Role of point defects in the physical properties of fluorite oxides, Journal of American Ceramic Society 89 (2006) 3162-3166.
  • [17] Y. Wang, K. Duncan, Effects of oxygen vacancy concentration on mechanical properties of cerium oxide, Proceeding of 208th ECS Meeting, California, 2005, 23-31.
  • [18] T. Zhang, Development and characterization of ceramics for solid oxide fuel cell, PhD Thesis, Nanyang Technological University, Singapore, 2004.
  • [19] R. L. Fullman, Measurement of particle size in opaque bodies, Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers 1970 (1953) 447-452.
  • [20] M. Fujikane, D. Setoyama, Nanoindentation examination of yitria-stabilized zirconia (YSZ) crystal, Journal of Alloys and Compounds 431 (2007) 250-255.
  • [21] G. A. Gogosti, S. N. Dub, E. E. Lomonova, Vickers and knoop indentation behaviour of cubic and partially stabilized zirconia crystals, Journal of European Ceramic Society 15 (1995) 405-413.
  • [22] M. Tavafoghi-Jahromi, Synthesis, kinetics, and sintering studies of nano/micro CeO2 powder, M. Eng. Thesis, Nanyang Technological University, Singapore, 2008.
  • [23] E. Ruiz-Trejo, A. Benitez-Rico, Nanoparticles and nanograin-sized Y-doped CeO2 ceramics, Journal of the Electrochemical Society 154 (2007) 258-262.
  • [24] J. S. Lee, K. H. Choi, B. K. Ryu, Effects of gallia additions on sintering behavior of gadolinia-doped ceria, Materials Research Bulletin 39 (2004) 2025-2033.
  • [25] S. J. Kang, Sintering: Densification, Grain Growth & Microstructure, Elsevier Butterworth-Heinemann, Burlington, 2005.
  • [26] B. K. Jang, Influence of low indentation load on young’s modulus and hardness of 4 mol% Y2O3-ZrO2 by nanoindentation, Journal of Alloys and Compounds 426 (2006) 312-315.
  • [27] L. Qian, M. Li, Z. Zhou, Comparison of nano-indentation hardness to microhardness, Surface and Coatings Technology 195 (2005) 264-271.
  • [28] S. Maschio, O. Sbaizero, Mechanical properties in the ceria-zirconia system, Journal of European Ceramic Society 9 (1992) 127-132.
  • [29] R. W. Armstrong, Grain size dependent alumina fracture mechanics stress intensity, International Journal of Refractory Metals and Hard Materials 19 (2001) 251-255.
  • [30] P. R. Raghunath, K. P. Swadesh, S. Bhattacharyya, Powder processing and densification behaviour of alumina-high zirconia nanocomposites using chloride precursors, Journal of Materials Processing Technology 190 (2007) 350-357.
  • [31] K. Sato, H. Yugami, Effect of rare-earth oxides on fracture properties of ceria ceramics, Journal of Materials Science 39 (2004) 5765-5770.
  • [32] A. Atkinson, A. Selcuk, Mechanical behavior of ceramic oxygen ion-conductivity membranes, Solid State Ionics 134 (2000) 59-66.
  • [33] Y. Wang, K. Duncan, The effect of oxygen vacancy concentration on the elastic modulus of fluorite-structured oxides, Solid State Ionics 178 (2007) 53-57.
  • [34] M. Szutkowska, M. Boniecki, Crack growth resistance of Al2O3-ZrO2(nano) (12 mol% CeO2) ceramics, Journal of Achievements in Materials and Manufacturing Engineering 22/1 (2007) 41-44.
  • [35] A. J. Novinrooz, N. Afshari, H. Seyedi, Improvement of hardness and corrosion resistance of SS-420 by Cr+TiN coatings, Journal of Achievements in Materials and Manufacturing Engineering 23/1 (2007) 43-46.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0020-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.