PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

FEM analysis of compression screws used for small bone treatment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presents results of numerical analysis in metatarsal bone „I” - compression screws system. The aim of the work was determined stresses, strain and displacement in the inserted screws. Design/methodology/approach: Metatarsal bone „I” was selected to researches. The analysis was carried out on the metatarsal bone „I” - compression screws system. The influence of the loads and displacements on the bone - screws system on the results of numerical analyses was analyzed. In order to carry out calculations, 2 models of diverse mechanical properties of screw - Ti-6Al-4V alloy - model 1, stainless steel (Cr-Ni-Mo) - model 2 and two load steps were selected. Findings: The analyses showed the difference in displacements, strains and stresses depending on the selected mechanical properties screws and the way of loads. Research limitations/implications: The limitations were connected with simplification of numerical model of femur as well as with the selected boundary conditions. Two difference way of loads metatarsal bone „I” - compression screws system: 1_force F = 500 N, 2_ displacement l = 1 mm were applied. Practical implications: The obtained results can be useful in clinical practice. They can be applied in selection of stabilization methods or rehabilitation as well as in describing the biomechanical conditions connected with type of bone fracture obtained from medical imaging. Originality/value: Stress-strain-displacement characteristics of metatarsal bone „I” - compression screws system, obtained from the numerical analysis were presented in the work.
Rocznik
Strony
189--196
Opis fizyczny
Bibliogr. 27 poz., rys., tabl.
Twórcy
autor
autor
autor
  • Division of Biomedical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, wojciech.kajzer@polsl.pl
Bibliografia
  • [1] Stryker Leibinger GmbH &Co. KG: TwinFix Cannulated Compression Screw, Leibinger Solutions for Hand Surgery, Procedural Guide, 2004 Stryker.
  • [2] W. Walke, J. Marciniak, Z. Paszenda, M. Kaczmarek, J. Cieplak, Biomechanical behaviour of double threaded screw in tibia fixation. Information Technologies in Biomedicine. Advances in Soft Computing Springer-Verlag 47, Berlin Heidelberg, 2008, 521-528.
  • [3] J. Marciniak, M. Kaczmarek, W. Walke, J. Cieplak, Biomechanical analysis of plate for corrective osteotomy of tibia. Information Technologies in Biomedicine. Advances in Soft Computing Springer-Verlag 47, Berlin Heidelberg, 2008, 545-550.
  • [4] J. Marciniak, J. Szewczenko, W. Walke, M. Basiaga, M. Kiel, I. Mańka, Biomechanical analysis of lumbar spine stabilization by means of transpedicular stabilizer, Information Technologies in Biomedicine. Advances in Soft Computing, Springer-Verlag 47, Berlin Heidelberg, 2008, 529-536.
  • [5] J. Żmudzki, W. Walke, W. Chladek, Influence of model discretization density in fem numerical analysis on the determined stress level in bone surrounding dental implants. Information Technologies in Biomedicine. Advances in Soft Computing, Springer-Verlag 47, Berlin, 2008, 559-567.
  • [6] M. Nałęcz, Biocybernetics and biomedical engineering. 2000. Vol 5: Biomechanics and rehabilitation engineering, PAN Academic Publishing House EXIT, Warsaw 2004, 1- 42, 291-304 (in Polish).
  • [7] R. Będziński, Engineering biomechanics. Selected issues, Publishing House of Wroclaw Technical University, Wroclaw, 1997, 13-45 (in Polish).
  • [8] A. Kajzer, W. Kajzer, J. Marciniak, Osteosynthesis with the use of expansion intramedullary nails. Engineering of Biomaterials, Numer 77-80, Volume XI, Year XI (2008), ISSN 1429-7248, ss.74-76.
  • [9] W. Kajzer, A. Krauze, M. Kaczmarek, J. Marciniak, FEM analisys of the expandable intramedullary nail, Conference on Information Technologies in Biomedicine, 2008, Advances in soft computing, Springer-Verlag, 47, 2008 537-544.
  • [10] A. Krauze, W. Kajzer, W. Walke, J. Dzielicki, Physicoche-mical properties of fixation plates used in pectus excavatum treatment, International Journal of Computational Materials Science and Surface Engineering, 1/3 (2007) 351-365.
  • [11] A. Krauze, M. Kaczmarek, J. Marciniak, Numerical analysis of femur in living and dead phase, Journal of Achievements in Material and Manufacturing Engineering 26/2 (2008) 163-166.
  • [12] A. Krauze, J. Marciniak, Numerical method in biomechanical analysis of intramedullary osteosynthesis in children. Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 120-126.
  • [13] W. Walke, Z. Paszenda, J. Filipiak, Experimental and numerical biomechanical analysis of vascular stent, Proceedings of the 13th International Scientific Conference “Achievements in Materials and Mechanical Engineering” AMME'2005, Gliwice-Wisła, 699-702.
  • [14] W. Chrzanowski, J. Marciniak, Biomechanical analysis of the femoral bone-interlocking intramedullary nail system. Proceedings of 18th European Conference on Biomaterials, Stuttgart, 2003, 154.
  • [15] W. Walke, Z. Paszenda, J. Filipiak, Experimental and numerical biomechanical analysis of vascular stent, Journal of Materials Processing Technology 164-165 (2005) 1263-1268.
  • [16] J. Marciniak, W. Chrzanowski, A. Kajzer, Intramedullary nailing in osteosynthesis, Printing House of the Silesian University of Technology, Gliwice, 2008.
  • [17] J. Marciniak, W. Chrzanowski, M. Kaczmarek, Biomechanical analysis of femur-intramedullar nail system with the use of finite element method, Proceedings of the XVII Conference Biomaterials in medicine and veterinary. Rytro 2003. Biomaterials Engineering 30-33 (2003) 53-55.
  • [18] W. Chrzanowski, J. Marciniak, Biomechanical and biomate-rial conditions in intramedullar osteosynthesis, Proceedings of the 3rd Scientific Conference on Materials, Mechanical and Manufacturing Engineering, Gliwice-Wisła 2005, 319-324.
  • [19] M. Kaczmarek, J. Marciniak, Issues of plate stabilizers for osteosynthesis, Proceedings of the 3rd Scientific Conference on Materials, Mechanical and Manufacturing Engineering, Gliwice-Wisła, 2005, 325-334.
  • [20] J. Okrajni, M. Plaza, S. Ziemba, Validation of computer models of an artificial hip joint, Archives of Materials Science and Engineering 28/5 (2007) 305-308.
  • [21] W. Walke, Z. Paszenda, W. Jurkiewicz, Biomechanical characteristic of coronary stent design with Offset Crown Connection Technology, XVII Conference Biomaterials in Medicine and Veterinary Medicine. Biomaterials Engineering 58-60 (2006) 209-211.
  • [22] W. Walke, Z. Paszenda, W. Jurkiewicz, Biomechanical behaviour of coronary stent design with OCC Technology, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 199-202.
  • [23] W. Chladek, I. Czerwik, W. Walke, Numerical model of temporomandibular joint, Proceedings of the 3rd Symphosy „Eksperyment i metody poznawcze w stomatologii”, Ustroń, 2007, 30-35 (in Polish).
  • [24] W. Walke, Z. Paszenda, W. Jurkiewicz, Numerical analysis of three - layer vessel stent made form Cr-Ni-Mo steel and tantalum, International Journal of Computational Materials Science and Surface Engineering 1/1 (2007) 129-139.
  • [25] W. Chrzanowski, Biomechanical characteristic of the Intergration stabilizer. Proceedings of TC15-Youth Imeko Symposium On Experimental Solid Mechanics, Bertinoro (Forli), 2002, 69-70.
  • [26] ISO 5832-1, Implants for surgery metallic materials, Part I: Wrought stainless steel, (1997).
  • [27] Standard: ISO 5832-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0020-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.