PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion behaviour of Fe-Mn-Si-Al austenitic steel in chloride solution

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to investigate the corrosion behaviour of the new-developed high-manganese austenitic steel in 0.5n NaCl solution. Design/methodology/approach: The steel used for the investigation was thermomechanically rolled and solution heat-treated from a temperature of 850°C. Corrosion resistance of investigated steel was examined using weight and potentiodynamic methods. In the weight method, the specimens were immersed in the prepared solution for 24h. In the potentiodynamic method, anodic polarization curves with a rate of potential changes of 1 mV/s in the anodic direction were registered. After the current density being equal 1 mA/cm2 was achieved, the direction of polarization has been changed. Basing on the registered curves, the pitting potential, repassivation potential, polarization resistance and corrosion current were determined. Findings: It was found that the steel is characterized by a partially recrystallized austenitic microstructure with numerous annealing twins and slip bands. According to the results of potentiodynamic analyses it was found that the samples of examined steel show poor corrosion resistance in the NaCl solution. The observed corrosion pits are related to the chemical composition. It is connected with the high dissolution rate of Mn and Fe atoms in NaCl solution. Fractographic analyses of samples revealed corrosion products on their surface in a form of pits with diversified size. Research limitations/implications: To investigate in more detail the corrosion behaviour of high-manganese steel, the investigations should include steels with a wider Al concentration. Practical implications: The obtained results can be used for searching the appropriate way of improving the corrosion resistance of a modern group of high-manganese austenitic steels. Originality/value: The corrosion behaviour in chloride solution of a new-developed Fe-Mn-Si-Al steel was investigated.
Rocznik
Strony
159--165
Opis fizyczny
Bibliogr. 25 poz., rys., tabl.
Twórcy
autor
autor
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, marek.opiela@polsl.pl
Bibliografia
  • [1] H. Takechi, Application of IF based sheet steels in Japan, Proceedings of the International Conference on the Processing, Microstructure and Properties of IF Steels, Pittsburgh, 2000, 1-12.
  • [2] A. D. Paepe, J. C. Herman, Improved deep drawability of IF-steels by the ferrite rolling practice, Proceedings of the 37th Mechanical Working and Steel Processing Conference, Baltimore, 1999, 951-962.
  • [3] J. Adamczyk, A. Grajcar, Heat treatment and mechanical properties of low-carbon steel with dual-phase microstructure, Journal of Achievements in Materials and Manufacturing Engineering 22/1 (2007) 13-20.
  • [4] A. Grajcar, Hot-working in the γ+α region of TRIP-aided microalloyed steel, Archives of Materials Science and Engineering 28/12 (2007) 743-750.
  • [5] E. Doege, S. Kulp, Ch. Sunderkötter, Properties and application of TRIP-steel in sheet metal forming, Steel Research 73 (2002) 303-308.
  • [6] S. Ganesh Sundara Raman, K. A. Padmanabhan, Tensile deformation-induced martensitic transformation in AISI 304LN austenitic stainless steel, Journal of Materials Science Letters 13 (1994) 389-392.
  • [7] G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, ISIJ International 43 (2003) 438-446.
  • [8] S. Allain, J. P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys, Materials Science and Engineering A 387-389 (2004) 158-162.
  • [9] O. Grässel, L. Krüger, G. Frommeyer, L. W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development – properties – application, International Journal of Plasticity 16 (2000) 1391-1409.
  • [10] S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants, Mechanical behaviour of an austenitic Fe-30Mn-3Al-3Si and the importance of deformation twinning, Acta Materialia 52 (2004) 2005-2012.
  • [11] G. Frommeyer, O. Grässel, High strength TRIP/TWIP and superplastic steels: development, properties, application, La Revue de Metallurgie-CIT 10 (1998) 1299-1310.
  • [12] S. Allain S, J-P. Chateau, D. Dahmoun, O. Bouaziz, Modeling of mechanical twinning in a high manganese content austenitic steel, Materials Science and Engineering A 387-389 (2004) 272-277.
  • [13] B. X. Huang, X. D. Wang, Y. H. Rong, L. Wang, L. Jin, Mechanical behavior and martensitic transformation of an Fe-Mn-Si-Al-Nb alloy, Materials Science and Engineering A 438-440 (2006) 306-313.
  • [14] L. A. Dobrzański, A. Grajcar, W. Borek, Influence of hot-working conditions on a structure of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 29/1 (2008) 139-142.
  • [15] A. Grajcar, M. Opiela, G. Fojt-Dymara, The influence of hot-working conditions on a structure of high-manganese steel, The 1st International Lower Silesia – Saxony Conference – Advanced Metal Forming Processes in Automotive Industry, Wrocław, 2008, 213-221.
  • [16] L. A. Dobrzański, A. Grajcar, W. Borek, Hot-working behaviour of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 7-14.
  • [17] L. A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution and phase composition of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 218-225.
  • [18] Y. G. Kim, Y. S. Park, J. K. Han, Low temperature mechanical behavior of microalloyed and controlled-rolled Fe-Mn-Al-C-X alloys, Metallurgical and Materials Transactions 16A (1985) 1689-1693.
  • [19] C. J. Altstetter, A. P. Bentley, J. W. Fourine, A. N. Kirkbridge, Processing and properties of Fe-Mn-Al alloys, Materials Science and Engineering A82 (1986) 13-25.
  • [20] I. M. Ghayad, A. S. Hamada, N. N. Girgis, W. A. Ghanem, Effect of cold working on the aging and corrosion behaviour of Fe-Mn-Al stainless steel, Steel Grips 4 (2006) 133-137.
  • [21] A. S. Hamada, Manufacturing, mechanical properties and corrosion behavioiur of high-Mn TWIP steels, Acta Universitatis Ouluensis C281 (2007) 1-51.
  • [22] A. S. Hamada, L. P. Karjalainen, M. A. El-Zeky, Effect of anodic passivation on the corrosion behaviour of Fe-Mn-Al steels in 3.5%NaCl, Proceedings of the 9th International Symposium on the Passivation of Metals and Semiconductors and the Properties of Thin Oxide Layers, Paris, 2005, 77-82.
  • [23] J. Baszkiewicz, M. Kamiński, Fundamentals of materials corrosion, The Warsaw University of Technology Publishers, Warsaw, 1997 (in Polish).
  • [24] Y. S. Hang, X. M. Zhu, M. Liu, R. X. Che, Effects of anodic passivation on the constitution, stability and resistance to corrosion of passive film formed on an Fe-24Mn-4Al-5Cr alloy, Applied Surface Science 222 (2004) 89-101.
  • [25] J. Inagaki, M. Sakurai, T. Watanabe, Alloying reactions in hot dip galvanizing and galvannealing processes, ISIJ International 35 (1995) 1388-1393.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0020-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.