PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calculation of the cooling condition in the phase change problem

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the paper is to present the method of calculation of the cooling condition in the phase change problem. The considered problem consists of the reconstruction of a function describing the heat transfer coefficient, when the temperature values in selected points of the solid phase are known. Design/methodology/approach: In numerical calculations, the Tikhonov regularization, the genetic algorithm and the alternating phase truncation method were used. Findings: The featured examples of calculations show a very good approximation of the exact solution and stability of the procedure. Practical implications: The paper presents an example of selection of the heat transfer coefficient given in the form of a continuous function. This method can be easily adopted also for the determination of other parameters of the problem discussed here. Originality/value: The calculations made, only part of which has been presented in this paper, show stability of the method proposed, both in terms of the input data errors and the number of control points, thus corroborating usefulness of the presented approach.
Rocznik
Strony
70--77
Opis fizyczny
Bibliogr. 27 poz., rys., tabl.
Twórcy
autor
  • Institute of Mathematics, Silesian University of Technology, ul. Kaszubska 23, 44-100 Gliwice, Poland, damian.slota@polsl.pl
Bibliografia
  • [1] R. Grzymkowski, D. Słota, One-phase inverse Stefan problems solved by Adomian decomposition method, Computers and Mathematics with Applications 51 (2006) 33-40.
  • [2] D. Słota, Direct and inverse one-phase Stefan problem solved by variational iteration method, Computers and Mathematics with Applications 54 (2007) 1139-1146.
  • [3] H. S. Ren, Application of the heat-balance integral to an inverse Stefan problem, International Journal of Thermal Sciences 46 (2007) 118-127.
  • [4] N. Zabaras, Y. Ruan, A deforming finite element method analysis of inverse Stefan problem, International Journal for Numerical Methods in Engineering 28 (1989) 295-313.
  • [5] N. Zabaras, Inverse finite element techniques for the analysis of soldification processes, International Journal for Numerical Methods in Engineering 29 (1990) 1569-1587.
  • [6] J. Liu, B. Guerrier, A comparative study of domain embedding methods for regularized solutions of inverse Stefan problems, International Journal for Numerical Methods in Engineering 40 (1997) 3579-3600.
  • [7] K. A. Woodbury, Q. Ke, A boundary inverse heat conduction problem with phase change for moisture-bearing porous medium, Proceedings of the 3rd International Conference “Inverse Problems in Engineering” HT20, ASME/UEF, New York, 1999, 1-7.
  • [8] Y. F. Wang, D. R. Lloyd, Spherulitic crystallization: An analysis of inverse Stefan problems in cartesian, cylindrical, and spherical coordinate systems, Polymer Engineering and Science 34 (1994) 477-484.
  • [9] A. P. De Oliveira, H. R. B. Orlande, Estimation of the heat flux at the surface of ablating materials, Inverse Problems in Engineering Mechanics III, Elsevier, Amsterdam, 2002, 39-48.
  • [10] D. V. F. M. R. Silva, H. R. B. Orlande, Estimation of thermal properties of ablating materials, Inverse Problems in Engineering Mechanics III, Elsevier, Amsterdam, 2002, 49-58.
  • [11] H. Budman, A. Shitzer, J. Dayan, Analysis of the inverse problem of freezing and thawing of a binary solution during cryosurgical processes, Transactions of the ASME, Journal of Biomechanical Engineering 117 (1995) 193-202.
  • [12] Y. Rabin, A. Shitzer, Combined solution of the inverse Stefan problem for successive freezing-thawing in nonideal biological tissues, Transactions of the ASME, Journal of Biomechanical Engineering 119 (1997) 146-152.
  • [13] L. A. Dobrzański, R. Maniara, J. Sokołowski, W. Kasprzak, Applications of artificial intelligence methods for modelling of solidus temperature for hypoeutectic Al-Si-Cu alloys, International Journal of Computational Materials Science and Surface Engineering 1/2 (2007) 214-255.
  • [14] L. A. Dobrzański, T. Tański, J. Trzaska, Modeling of the optimum heat treatment conditions of Mg-Al-Zn magnesium cast alloys, International Journal of Computational Materials Science and Surface Engineering (2007) (in print).
  • [15] E. Majchrzak, M. Dziewoński, G. Kałuża, Identification of cast steel latent heat by means of gradient method, International Journal of Computational Materials Science and Surface Engineering 1/5 (2007) 555-570.
  • [16] M. R. Amin, A. Mahajan, Modeling of turbulent heat transfer during the solidification process of continuous castings, Journal of Materials Processing Technology 174 (2006) 155-166.
  • [17] E. Armentani, R. Esposito, R. Sepe, The influence of thermal properties and preheating on residual stresses in welding, International Journal of Computational Materials Science and Surface Engineering 1 (2007) 46-162.
  • [18] Cz. Baron, D. Bartocha, J. Gawroński, Thermal simulation of formation composite layer on model casting process, International Journal of Computational Materials Science and Surface Engineering 1/2 (2007) 163-180.
  • [19] A. Farzadi, S. Serajzadeh, A.H. Kokabi, Modelling of transport phenomena in gas tungsten arc welding, Archives of Materials Science and Engineering 28/7 (2007) 417-420.
  • [20] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, Berlin, 1996.
  • [21] A. Osyczka, Evolutionary Algorithms for Single and Multicriteria Design Optimization, Physica-Verlag, Heidelberg, 2002.
  • [22] J. C. W. Rogers, A. E. Berger, M. Ciment, The alternating phase truncation method for numerical solution of a Stefan problem, SIAM Journal on Numerical Analysis 16 (1979) 563-587.
  • [23] E. Majchrzak, B. Mochnacki, Application of the BEM in the thermal theory of foundry, Engineering Analysis with Boundary Elements 16 (1995) 99-121.
  • [24] K. Kurpisz, A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Southampton, 1995.
  • [25] A. N. Tikhonov, V. Y. Arsenin, Solution of Ill-Posed Problems, Wiley & Sons, New York, 1977.
  • [26] D. Słota, Three-phase inverse design Stefan problem, Lecture Notes in Computer Science 4487 (2007) 184-191.
  • [27] D. Słota, Solving the inverse Stefan design problem using genetic algorithms, Inverse Problems in Science and Engineering 16/8 (2008) 1069-1070.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0020-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.