PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

External pressure in the hardening of phosphate in tribofilm on iron surfaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In the present work we consider our (in progress) spectroscopy study of zinc and iron phosphates under the influence external high pressure to determine zinc ion change coordination from tetrahedral to octahedral (or hexahedral) structure. Design/methodology/approach: The standard equipment is the optical high pressure cell with diamond (DAC). The DAC is assembled and then vibrational or electronic spectra are collected by mounting the cell in an infrared, Raman, EXAFS or UV-visible spectrometer. Findings: Mechanism by which zinc and iron methaphosphate material is transformed to glassy meta-phosphate is enhancing mechanical properties of tribofilm. The two decades of intensive study demonstrates that Zn (II) and Fe (III) ions participate to cross-link network under friction, hardening the phosphate. Research limitations/implications: Transition metal atoms with d orbital have flexible coordination numbers, for example zinc acts as a cross-linking agent increasing hardness, by changing coordination from tetrahedral to octahedral. Perhaps the external pressure effect on the [Zn–(O-P-)4 ] complex causes a transformation to an [Zn –(O-P-)6] grouping. Originality/value: This paper analyses high-pressure spectroscopy which has been applied for the investigation of 3D transition metal ions in solids. When studying pressure effects on coordination compounds structure, we can expect changes in ground electronic state (spin-crossovers), electronic spectra due to structural distortions (piezochromism), and changes in the ligand field causing shifts in the electronic transitions.
Rocznik
Strony
35--40
Opis fizyczny
Bibliogr. 54 poz., rys., tabl.
Twórcy
autor
autor
autor
autor
  • School of Engineering Systems, Queensland University of Technology, GPO Box 2434 Brisbane, Q 4001, Australia, zpawlak@xmission.com
Bibliografia
  • [1] M. T. Nicholls, T. Do, P. R. Norton, M. Kasrai, G. M. Bancroft, Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates, Tribology International 38 (2005) 15-39.
  • [2] Z. Pawlak, Tribochemistruy of Lubricating Oils, Elsevier, Amsterdam, 2003.
  • [3] P. A. Willermet, D. P. Dailey, R. O. Carter, P. Schmitz, W. Zhu, Mechanism of formation of antiwear films from zinc dialkyldithiophosphates, Tribology International 28 (1995) 177-187.
  • [4] M. Belin, J. M. Martin, J. L. Mansot, Role of iron in the amorphization process in friction-induced phosphate glasses, Journal de Physique Colloque 2-C9 (1989) 1147- 1153.
  • [5] M. Belin, J. M. Martin, J. L. Mansot, Friction–induced amorphization with ZDDP, Tribology Transactions 32 (1989) 410-413.
  • [6] J. M. Martin, C. Grossiord, T. LeMagne, S. Bac, A. Tonck, The two-layer structure of Zndtp tribofilms Part I AES, XPS and XANES analyses, Tribology International 34 (1991) 523-530.
  • [7] N. J. Mosey, T. K. Woo, Finite temperature structure and dynamics of zinc dialkyldithiophosphate wear inhibitor a density functional theory and ab inito molecular dynamics study, Journal of Physical Chemistry 107 (2003) 5058-5079.
  • [8] M. A. Wimmer, C. Sprecher, R. Hauert, G. Tager, A. Fischer, Tribochemical reaction on metal-on-metal hip joint bearing: A comparison between in vitro and vivo results, Wear 255 (2003)1007-1013.
  • [9] N. J. Mosey, M. H. Muser, T. K. Woo, Molecular mechanism for the functionality of lubricant additives, Science 307 (2005) 1612-1615.
  • [10] J. K. Grey, I. S. Butler, Effects of high external pressures on the electronic spectra of coordination compounds, Coordination Chemistry Reviews 219-221 (2005) 713-759.
  • [11] J. M. Martin, Antiwear mechanism of zinc dithiophosphate: a chemical hardness approach, Tribology Letters 6 (1999) 1-8.
  • [12] A. Erxleben, Structures and properties of Zn (II) coordination polymers, Coordination Chemistry Reviews 246 (2003) 203-228.
  • [13] A. C. Choudhury, S. Natarajan, C. N. R. Rao, Formation of one-, two-, and three-dimensional open-framework zinc phosphates in the presence of a tetramine, Inorganic Chemistry 39 (2000) 4295-4304.
  • [14] W. Tuszynski, J. Molenda, M. Makowska, Tribochemical conversion of zinc dialkyldithiophosphate (ZDDP) under extremely different pressure conditions, Tribology Letters 13 (2002) 103-109.
  • [15] K. L. Bray, High pressure probes of electronic structure and luminescence properties of transition metal and lanthanide systems, Topics in Current Chemistry 213 (2001) 1-17.
  • [16] C. M. Edwards, I. S. Butler, Pressure-tuning spectroscopy of inorganic compounds: a summary of the past 15 years, Coordination Chemistry Reviews 199 (2000) 1-53.
  • [17] M. Grinberg, High pressure spectroscopy of rare earth ions doped crystals-new results, Optical Materials 28 (2006) 26-34.
  • [18] H. G. Drickamer, High pressure, electronic structure and chemistry in solids, Chemistry in Britain 9 (1973) 353-359.
  • [19] H. G. Drickamer, C. W. Frank, Electronic Transition and the High Pressure Chemistry and Physics in Solids, Chapman and Hall, New York, 1973.
  • [20] J. F. Ferraro, Vibrational Spectroscopy at High External Pressures the Diamond Anvil Cell, Wiley, New York, 1984.
  • [21] G. N. Greaves, X. L. Jaing, R. N. Jenkins, E. Holzenkampfer, S. Kalbitzer, EXAFES IV, Journal de Physique Colloque C8 (1986) 853-856.
  • [22] F. Farges, S. Rossano, Y. Lefrere, M. Wilke, G. E. Brown, Iron silicate glasses: a systematic anlasis of pre-edge, XANES and EXAFES features, Physica Scripta T115 (2005) 957-959.
  • [23] G. M. Greaves, X-Ray Absorption Spectroscopy. in: Glass Science and Technology, Academic Press, New York, 1990.
  • [24] S. T. Reis, M. Karabulut, D. E. Day, Chemical durability and structure of zinc–iron phosphate glasses, Journal of Non-Crystalline Solids 292 (2001) 150-157.
  • [25] C. R. Kurkjian, Mechanical properties of phosphate glasses’, Journal of Non-Crystalline Solids 263-264 (2000) 207-212.
  • [26] M. Karabulut, E. Melnik, R. Stefan, G. K. Marasinghe, C. S. Ray, C. R. Kurkjian, D. E. Day, Mechanical and structural properties of phosphate glasses, Journal of Non-Crystalline Solids 288 (2001) 8-17.
  • [27] B. C. Sales, L. A. Boatner, Lead phosphate glass as a stable medium for the immobilization and disposal of high-level nuclear waste, Tribology Letters 2 (1984) 301-304.
  • [28] B. C. Sales, L. A. Boatner, Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste, Science 226 (1984) 45-58.
  • [29] X. You, D. E. Day, G. J. Long, R. K. Brow, Properties and structure of sodium-iron phosphate glasses, Journal of Non-Crystalline Solids 215 (1997) 21-31.
  • [30] X. Fang, C. S. Ray, G. K. Marasinghe, D. E. Day, Properties of mixed Na2O and K2O iron phosphate glasses, Journal of Non-Crystalline Solids 263-264 (2000) 293-298.
  • [31] G. K. Marasinghe, K. Karabulut, C. S. Ray, D. E. Day, D. C.Shuh, P. G. Allen, M. L. Saboungi, M. Grimsditch, D. Haeffner, Proporties and structure of vitrified iron phosphate nuclear waste forms, Journal of Non-Crystalline Solids 263-264 (2000) 146-154.
  • [32] M. M. Roberts, J. R. Wienhoff, K. Grant, D. Lacks, Structural transformation in silica glass under high pressure, Journal of Non-Crystalline Solids 281 (2001) 205-212.
  • [33] E .Ohtani, F. Taulelle, C. A. Angele, Al (III) coordination changes in liquid aluminosilicates under pressure, Nature 31 (1985) 78-81.
  • [34] X. Xue, M. Kanzaki, R. G. Tronnes, J. F. Stebbins, Silicon coordination and speciation changes in a silicate liquid at high pressures, Science 245/4921 (1989) 962-964.
  • [35] J. Y. Shen, C. B. Luo, W. M. Zeng, X. P. Xu, Y. S. Gao, Ceramics grinding under the condition of constant pressure, Journal of Materials Processing and Technology 129 (2002) 176-181.
  • [36] G. Shrihari, G. K. Lal, Mechanism of vertical surface grinding, Journal of Materials Processing and Technology 44 (1994) 14-28.
  • [37] K. Li, T. W. Liao, Surface/subsurface damage and the fracture strength of ground ceramics, Journal of Materials Processing and Technology 57 (1996) 207-220.
  • [38] I. H. Son, J. H. Lee, Y. T. Im, Finie element investigation of equal channel angular extrusion with back pressure, Journal of Materials Processing and Technology 171 (2006) 480-487.
  • [39] H. S. Kim, M. H. Seo, S. I. Hong, Plastic deformation analysis of metals during equal channel pressing, Journal of Materials Processing and Technology 113 (2001) 622-626.
  • [40] W. Vogel, Glass Chemistry, Springer, Berlin, 1994, 244.
  • [41] R. K. Brow, Review: the structure of simple phosphate glasses, Journal of Non-Crystalline Solids 263-264 (2000) 1-28.
  • [42] Van Wazer, J. R. Phosphorus and its Compounds, Interscience, New York, 1, 1958.
  • [43] R. Gordon, Thermal Tempering of Glass, Glass Science and Technology, Academic Press, New York, 5, 1980, 145-216.
  • [44] D. R. Uhlmann, N. J. Kreidl, Glass Science and Technology, vol. 4B: Advances Analysis, Academic Press, Inc., Boston 1990.
  • [45] G. Calas, W. A. Bassett, J. Petiau, Structure of Non-Crystaline Materials II, Taylor & Francis, London, 1983, 18-28.
  • [46] D. Narducci, M. Lucca, F. Morazzoni, R. Scotti, Electron spin resonance investigation of the electronic structure of hopping centers and the polaronic conduction in iron-containing phosphate glasses, Journal of the Chemical Society, Faraday Transactions 85 (1989) 4099-4110.
  • [47] M. L. Hwang, W. L. Hsu, K. F. E. Williams, C. E. Johnson, M. F. Thomas, Mossbauer spectroscopy measurements of iron oxidation states in float composition silica glasses, Journal of Non-Crystalline Solids 226 (1998) 19-23.
  • [48] Y. K. Chou, Surface hardening of AISI 4340 steel by machining : a preliminary investigation, Journal of Materials Processing and Technology 124 (2002) 171-177.
  • [49] A. Behrens, H. Schafstall, 2D and 3D simulation of complex multistage forging processes by use of adaptive friction coefficien’, Journal of Materials Processing and Technology 80-81 (1998) 298-303.
  • [50] P. Myllkoski, J. Lorkiola, J. Nylander, Development of prediction model of mechanical properties of batch annealed thin steel strip by using artificial neural network modeling, Journal of Materials Processing and Technology 60 (1996) 399-404.
  • [51] Y. C. Lin, S. W. Wang, T. M. Chen, A study on the wear behavior of hardened medium carbon steel, Journal of Materials Processing and Technology 120 (2002) 126-132.
  • [52] A. Olefinjana, T. Tesfamichael, J. M. Bell, Chemical modification and the attending surface hardness of low alloy steel through medium energy nitrogen ion implantation, Journal of Materials Processing and Technology 164-165 (2005) 905-910.
  • [53] U. Sen, S. Sen, F. Yilmaz, An evaluation of some properties of borides deposited on boronized ductile iron, Journal of Materials Processing and Technology 148 (2004) 1-7.
  • [54] S. D. Stookey, J. S. Olcott, US Patent 2 998 675.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0020-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.