PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Arc voltage behavior in GMAW-P under different drop transfer modes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Experimental measurements have been made to investigate meaning of the change in voltage for the pulse gas metal arc welding (GMAW-P) process operating under different drop transfer modes. Design/methodology/approach: Welding experiments with different values of pulsing parameter and simultaneous recording of high speed camera pictures and welding signals (such as current and voltage) were used to identify different drop transfer modes in GMAW-P. The investigation is based on the synchronization of welding signals and high speed camera to study the behaviour of voltage signal under different drop transfer modes. Findings: The results reveal that the welding arc is significantly affected by the molten droplet detachment. In fact, results indicate that sudden increase and drop in voltage just before and after the drop detachment can be used to characterize the voltage behaviour of different drop transfer mode in GMAW-P. Research limitations/implications: The results show that voltage signal carry rich information about different drop transfer occurring in GMAW-P. Hence it’s possible to detect different drop transfer modes. Future work should concentrate on development of filters for detection of different drop transfer modes. Originality/value: Determination of drop transfer mode with GMAW-P is crucial for the appropriate selection of pulse welding parameters. As change in drop transfer mode results in poor weld quality in GMAW-P, so in order to estimate the working parameters and ensure stable GMAW-P understanding the voltage behaviour of different drop transfer modes in GMAW-P will be useful. However, in case of GMAW-P hardly any attempt is made to analyse the behaviour of voltage signal for different drop transfer modes. This paper analyses the voltage signal behaviour of different drop transfer modes for GMAW-P.
Rocznik
Strony
196--202
Opis fizyczny
Bibliogr. 29 poz., rys., tabl.
Twórcy
autor
autor
  • School of Engineering Systems, Queensland University of Technology, 2 George Street, Brisbane, Qld 4001, Australia, p.posinaseeti@qut.edu.au
Bibliografia
  • [1] S. C. Absi Alfaro, G. C. Carvalho, S. A. de Melo Júnior, Stand off's indirect estimation in GMAW, Journal of Materials Processing Technology 157-158 (2004) 3-7.
  • [2] K. Y. Bae, T. H. Lee, K. C. Ahn, An optical sensing system for seam tracking and weld pool control in gas metal arc welding of steel pipe, Journal of Materials Processing Technology 120 (2002) 458-465.
  • [3] P. S. S. Balsamo, L. O. Vilarinho, M. Viela, A. Scotti, Development of an experimental technique for studying metal transfer in welding: synchronized shadowgraphy, International Journal for the Joining of Materials 12 (2000) 1-12.
  • [4] D. S. Correia, C. Vasconcelos Gonçalves, S. S. Jr. Cunha, V. A. Ferraresi, Comparison between genetic algorithms and response surface methodology in GMAW welding optimization, Journal of Materials Processing Technology 160 (2005) 70-76.
  • [5] M. Goodarzi, Mathematical modelling of gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes, PhD Thesis University of Toronto, Canada, 2003.
  • [6] K. C. Jang, D. G. Lee, J. M. Kuk, I. S. Kim Welding and environmental test condition effect in weldability and strength of Al alloy, Journal of Materials Processing Technology 164-165 (2005) 1038-1045.
  • [7] L. A. Jones, T. W. Eager, J. H. Lang Magnetic forces acting on molten drops in gas metal arc welding, Journal of Applied Physics D 31 (1998) 3-106.
  • [8] S. Kim, A. Basu, A mathematical model of heat transfer and fluid flow in the gas metal arc welding process, Journal of Materials Processing Technology 77 (1998) 17-24.
  • [9] Y. S. Kim, Metal transfer in gas metal arc welding, PhD Thesis, MIT, USA, 1989.
  • [10] J. M. Kuk, K. C. Jang, D. G. Lee, I. S. Kim, Effects of temperature and shielding gas mixture on fatigue life of 5083 aluminum alloy, Journal of Materials Processing Technology 155-156 (2004) 1408-1414.
  • [11] C. L. Mendes da Silva, A. Scotti, The influence of double pulse on porosity formation in aluminum GMAW, Journal of Materials Processing Technology 171 (2006) 366-372.
  • [12] P. J. Modenesi, R. C. de Avelar, The influence of small variations of wire characteristics on gas metal arc welding process stability, Journal of Materials Processing Technology 86 (1998) 226-232.
  • [13] N. Murugan, R. S. Parmar, Effects of MIG process parameters on the geometry of the bead in the automatic surfacing of stainless steel, Journal of Materials Processing Technology 41 (1994) 381-398.
  • [14] J. H. Nixon, J. Norrish, Determination of pulsed MIG process parameters, Welding and Metal Fabrication 4 (1988) 4-7.
  • [15] P. Praveen, P. K. D. V. Yarlagadda, Meeting challenges in welding of aluminum alloys through pulse gas metal arc welding, Journal of Materials Processing Technology 164-165 (2005) 1106-1112.
  • [16] P. Praveen, P. K. D. V. Yarlagadda, M. J. Kang, Advancements in pulse gas metal arc welding, Journal of Materials Processing Technology 164-165 (2005) 1113-1119.
  • [17] P. Praveen, P. K. D. V. Yarlagadda, M. J. Kang, Arc voltage behaviour of one drop per pulse mode in GMAW-P, Journal of Achievements in Materials and Manufacturing in Engineering 17 (2006) 389-392.
  • [18] L. Quintino, C. J. Allum, Pulsed GMAW: interactions between process parameters – part 1, Welding and Metal Fabrication 85 (1981) 1-9.
  • [19] Z. Smati, Automated pulsed MIG welding, Metal Construction 18 (1985) 38-44.
  • [20] S. Subramaniam, Process modeling and analysis for pulsed gas metal arc welding of an aluminum automotive spaceframe, PhD Thesis, West Virginia University, USA, 1996.
  • [21] J. Tam, Methods of characterizing gas-metal arc welding acoustics for process automation, Ph. D. Thesis, University of Waterloo, Waterloo, Canada, 2005.
  • [22] S. Ueguri, K. Hara, H. Komura, Study of metal transfer in pulsed GMA welding, Welding Journal 64 (1985) 242-250.
  • [23] F. Wang, W. K. Hou, S. J. Hu, E. Kannatey-Asibu, W. W. Schultz, P. C. Wang, Modelling and analysis of metal transfer in gas metal arc welding, Journal of Applied Physics D 36 (2003) 1143-1152.
  • [24] G. Wang, P. G. Huang, Y. M. Zhang, Numerical analysis of metal transfer in gas metal arc welding under modified pulsed current conditions, Metallurgical and Materials Transactions B 35 (2004) 857-866.
  • [25] Q. L. Wang, P. J. Li, Arc light sensing of droplet transfer and its analysis in pulsed GMAW process, Welding Research Supplement 11 (1997) 458-469.
  • [26] J. H. Waszink, L. H. J. Graat, Experiment investigation of the force acting on a drop of weld metal, Welding Journal 2 (1983) 108-l16.
  • [27] J. H. Waszink, M. J. Piena, Experimental investigation of drop detachment and drop velocity in GMAW, Welding Journal 65 (1986) 289-298.
  • [28] F. Zhu, A comprehensive dynamic model of the gas metal arc welding process, PhD Thesis University of Missouri-Rolla, USA, 2003.
  • [29] P. Zhu, S. Simpson, Voltage change in the GMAW process due to the influence of a droplet travelling in the arc, Science and Technology of Welding and Joining 10 (2005)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0020-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.