PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterisation of nanostructured copper - WC materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this work was to determine the microstructure and properties stability of nanocrystalline copper dispersion hardened with nanoparticles of tungsten carbides. Design/methodology/approach: Tests were made with Cu and Cu – WC micro – composites containing up to 3% of a hardening phase. The materials were fabricated by powder metallurgy techniques, including milling of powders, followed by their compacting and sintering. The main mechanical properties of the materials were determined from the compression test, and, moreover, measurements of the HV hardness and electrical conductivity have been made. Analysis of the initial nanocrystalline structure of these materials was made and its evolution during sintering was investigated. Findings: It was found that an addition of up to 1.5 wt % of a WC significantly improves mechanical properties of the material and increases its softening point. Research limitations/implications: The powder metallurgy techniques make it possible to obtain nanocrystalline copper-based bulk materials. Additional operations of hot extrusion are also often used. There is some threat, however, that during high temperature processing or application these materials this nanometric structure may become unstable. Practical implications: A growing trend to use new copper-based functional materials is observed recently world-wide. Within this group of materials particular attention is drawn to those with nanometric grain size. Originality/value: The paper contributes to the determination of WC nanoparticles content on the mechanical properties and the nanostructure stability of Cu-WC micro-composites.
Rocznik
Strony
171--178
Opis fizyczny
Bibliogr. 29 poz., rys., tabl.
Twórcy
  • Division of Materials Processing Technologies, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, zbigniew.rdzawski@imn.gliwice.pl
Bibliografia
  • [1] W. Buchgraber, Structure and deformation behavior of SPD Cu-based nanocomposite, High Technology 80 (2000) 267-272.
  • [2] P.A. Carvalho, Characterization of copper cementite nanocompositte produced by mechanical alloying, Acta Materialia 53 (2005) 967-976.
  • [3] H. Conrad, Grain size dependence of the plastic deformation kinetics in Cu, Materials Science and Engineering A 341 (2003) 216-228.
  • [4] S. Czeng, Tensile properties of in situ consolidated nanocrystalline Cu, Acta Materialia 53 (2005) 1521-1533.
  • [5] P. K. Deshpande, J. H. Li, R. Y. Lin, Infrared processed Cu composites reinforced with WC particles, Materials Science and Engineering A 429 (2006) 58-65.
  • [6] H. Ferkel, Properties of copper Reinforced by Laser- Generated Al2O3 – Nanoparticles, NanoStructured Materials 11 (1999) 595-602.
  • [7] R. Haugsrud, K. L. Lee, On the oxidation behaviour of a Cu-10 vol.% Cr in situ composite, Materials Science and Engineering A 396 (2005) 87-91.
  • [8] Y. R. Kolobov, Creep of copper and Cu0,9%vol Al2O3 nanocomposite, High Technology 80 (2000) 339-344.
  • [9] K. S. Kumar, H. van Swygenhowen, S. Suresh, Mechanical behaviour of nanocrystaline metals and alloys, Acta Materialia 51 (2003) 5743-5774.
  • [10] Y. J. Li, X. H. Zeng, W. Blum, Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu, Acta Materialia 52 (2004) 5009-5018.
  • [11] M. Lopez, Performance and characterization of dispersion strengthened Cu – TiB2 composite for electrical use, Materials Characterization 55 (2005) 252-262.
  • [12] M. S. Motta, P. K. Jena, E. A. Brocchi, I. G. Solorzano, Characterization of Cu-Al2O3 nano-scale composites synthesized by in situ reduction, Materials Science and Engineering C 15 (2001) 175-177.
  • [13] S. F. Moustafa, Z. Abbel-Hamid, A. M. Abd-Elhay, Copper matrix SiC and Al2O3 particulate composites by powder metallurgy technique, Materials Letters 53 (2002) 244-249.
  • [14] Qiang Xu, Combustion synthesis and densification of titanium diboride – copper matrix composite, Materials Letters 75 (2003) 4439-4444.
  • [15] V. Rajkovic, Copper matrix strengthening in Cu-Al2O3 system by mechanical alloying and milling of pure copper and prealloyed copper powders, Advanced Science and Technology of Sintering 15 (1998) 537-543.
  • [16] Z. Rdzawski, J. Stobrawa, Structure of coherent precipitates in aged copper alloys, Scripta Metallurgica 20 (1986) 341-344.
  • [17] Z. Rdzawski, J. Stobrawa, Thermomechanical processing of Cu-Ni-Si-Cr-Mg alloy, Materials Science and Technology l3 (1993) 142-145.
  • [18] G. Saada, Hall-Petch revisited, Materials Science and Engineering A 400-401 (2005) 146-149.
  • [19] J. Stobrawa, Z. Rdzawski, Inhomogeneous precipitation in aged copper-chromium alloy, Scripta Metallurgica 21 (1987) 1269-1271.
  • [20] J. Stobrawa, L. Ciura, Z. Rdzawski, Rapidly solidified strips of Cu-Cr alloys, Scripta Materialia 34 (1996) 1759-1763.
  • [21] J. Stobrawa, Z. Rdzawski, Deformation behaviour of dispersion hardened nanocrystalline copper, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 153-156.
  • [22] J. Stobrawa, Z. Rdzawski, W. Głuchowski, Structure and properties of dispersion hardened submicron grained copper, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 195-200.
  • [23] J. Stobrawa, Z. Rdzawski, Formation of a stable nanostructure in the copper-based materials, Proceedings of the 11th International Scientific Conference “Contemporary Achievements in Mechanics, Manufacturing and Materials Science” CAM3S’2005, Gliwice-Zakopane, 2005, (CD-ROM).
  • [24] S. C. Tjong, K. C. Lau, Abrasive wear behavior of TiB2 particles reinforced composites, Materials Science and Engineering A 396 (2005) 87-91.
  • [25] J. P. Tu, L. Meng, M.S. Liu, Friction and wear behavior of Cu – Fe3Al powder metallurgical composites in dry sliding, Wear 220 (1998) 72-79.
  • [26] N. Wang, Effect of grain size on mechanical properties of nanocrystaline materials, Acta Metallurgica et Materialia C 43/2 (1995) 519-528.
  • [27] D. Y. Ying, D. L. Zhang, Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling, Materials Science and Engineering 1 (2000) 152-156.
  • [28] Y. Zhou, Young modulus in nanostructured metals, Zeitschrift fur Metallkunde 94 (2003) 1157-1161.
  • [29] A. Zuniga, Microstructure and mechanical behavior of Cu-based composites reinforced with WC and TiC particles, prepared by spray forming, Proceedings of the 2nd International Latin American Conference “Powder Technology”, Iquacu, Brasil, 1999 (CD-ROM).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0020-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.