Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Konferencja
XV Physical Metallurgy and Materials Science Conference on Advanced Materials & Technologies AMT'98, Kraków-Krynica, Poland, 17-21 May, 1998
Języki publikacji
Abstrakty
Nanocrystalline, ordered NiAl (n-NiAl) was successfully synthesized and compacted at various temperatures. The as-consolidated specimens exhibit grain sizes between 2 and 12 nm, a homogeneous chemical composition, and densities between 78 and 94% of the theoretical density, increasing with increasing compaction temperature. Microhardness of the n-NiAl increases with increasing grain size and density, above all as a result of reduced porosity following compaction at increasing temperatures. The present material is significantly stronger than its conventional countepart but not as strong as predicted by Hall-Petch-type modelling. Also, in the nanocrystalline form, NiAl exhibits room temperature ductility, unlike its coarsegrained countepart. The mechanical behaviour of n-NiAl can be rationalized assuming that diffusional - rather than location - mechanisms control strength and ductility of nanocrystalline materials.
Wydawca
Czasopismo
Rocznik
Tom
Strony
803--812
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Illinois Institute of Technology, Chicago, USA
autor
- Westinghouse Electric Corporation, Orlando, USA
autor
- Argonne National Laboratory, Argonnes, USA
- Illinois Institute of Technology, Chicago
Bibliografia
- [1] R. Darolia, J. Met., 43 (1991) 44.
- [2] I. Baker and P. R. Monroe, J. Met., 40 (1988) 28.
- [3] G. Sauthoff, in Proc. German Society of Materials Science Conference on Microstructure and Mechanical Properties of Materials, Bad Nauhem, 1991, p. 363
- [4] S. Dymek, M. Dollar, P. Nash and S. J. Hwang, Mater. Sci. Eng., A 152 (1992) 160
- [5] R. W. Siegel, Materials Science and Technology, Vol. 15: Processing of Metals and Alloys, R. W. Cahn, ed. (VCH, Weinheim, 1991), p. 583.
- [6] J. A. Eastman, M. Choudry, M. N. Rittner, C. J. Youngdahl, M. Dollar, J. R. Weertman, J. DiMelfi, and L. J. Thompson, Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials, Edited by E. Ma, B. Fultz, R. Shull, J. Morral, and P. Nash, (The Minerals, Metals & Materials Society, 1997), p. 173.
- [7] R. W. Siegel, NanoStructured Materials, 3 (1993)1.
- [8] M. Gell, NanoStructured Materials, 6 (1995) 997
- [9] M. S. Choudry, J. A. Eastman, R. J. DiMelfi, and M. Dollar, Scripta Mat., 37 (1997) 843
- [10] J. A. Eastman, L.J. Thompson and D. J. Marshall, NanoStructured Materials, 2 (1993) 377
- [11] M. S. Choudry, PhD. Thesis, Illinois Institute of Technology, Chicago 1997
- [12] S. R. Phillpot, D. Wolf and H. Gleiter, J. Appl. Phys., 78 (1995) 847
- [13] A. Lasalmonie, J., L. Strudel, J. Mater. Sci., 21(1986) 1837
- [14] G. Palumbo, S. J. Thorpe, and K. T. Aust, Scripta Mat., 24 (1990) 1347
- [15] T. Haubold, R. Bohn, R. Birringer and H. Gleiter, Mater. Sci. & Eng., A 153 (1992) 679
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS1-0006-0073