PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure of interfaces in heteroepitaxial diamond films.

Identyfikatory
Warianty tytułu
Konferencja
XV Physical Metallurgy and Materials Science Conference on Advanced Materials & Technologies AMT'98, Kraków-Krynica, Poland, 17-21 May, 1998
Języki publikacji
EN
Abstrakty
EN
High-resolution transmission electron microscopy (HRTEM) studies of diamond films grown on Si (100) substrates by microwave-assisted chemical vapour deposition show that, under optimized conditions, epitaxially oriented diamond grains may form directly on Si or on thin interlayers of nanocrystalline Beta-SiC. The orientation relationships between the crystal lattices can be described by a near-coincidence site lattice model if small elastic lattice distortions are taken into account. Characteristic of the structure of large-angle grain boundaries are facets parallel to the {111} planes of the diamond lattice. Lattice images of the {110}-diamond lattice planes in <001>-zone axes orientations depict that the structure of small-angle grain boundaries can be described by a dislocation model. Large open volumes and additional second carbon phases are not found at the grain boundaries in diamond films beyond 10 micrometers. Such microscopic investigations of the structure of interfaces in diamond films on silicon are essential for a fundamental understanding of the deposition process and of the correlation of structural with physical interface properties, such as e.g. thermal transport.
Rocznik
Strony
785--790
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
  • Mikrostrukturanalytik, Technische Fakultät, Universität Kiel, Germany
autor
  • Institut für Festkörperforschung, Forschungszentrum Jülich, Germany
autor
  • Institut für Festkörperforschung, Forschungszentrum Jülich, Germany
  • Universitat Kiel, Technische Fakultat, Mikrostrukturanalytik
Bibliografia
  • [1] X. Jiang and C.-P. Klages, Appl. Phys. Lett. 62 (1993) 3438.
  • [2] H. Kawarada, T. Suesada, H. Nagasawa, Appl. Phys. Lett. 66 (1995) 583.
  • [3] L. Jia, K. Urban, X. Jiang, Phys. Rev. B 52 (1995) 5164.
  • [4] D. Wittorf, W. Jäger, K. Urban, T. Gutheit, H. Güttler, G. Schulz, R. Zachai, Diamond Rel. Mater. 6 (1997) 649.
  • [5] P. Wurzinger, P. Pongratz, J. Gerber, H. Ehrhardt, Diamond Rel. Mater. 5 (1996) 345
  • [6] M. Stammler, R. Stöckel, L. Ley, M. Albrecht, H.P. Strunk, Diamond Rel. Mater. 6 (1997) 747
  • [7] F. R. Sivazlian, J. T. Glass and B. R. Stoner, J. Mater. Res. 9 (1994) 2487.
  • [8] D. Shechtman, A. Feldman and J. Hutchison, Mater. Lett. 17 (1993) 211.
  • [9] D. Wittorf, W. Jäger, C. L. Jia, K. Urban, A. Flöter, H. Güttler, R. Zachai, Inst. Phys. Conf. 157 (1997) 451.
  • [10] D. Wittorf, C. L. Jia, W. Jäger, K. Urban, X. Jiang, M. Paul, C.-P. Klages, Mat. Res. Soc. Symp. Proc. 66 (1997) 27.
  • [11] H. Verhoeven, A. Flöter, H. Reiß, R. Zachai, D. Wittorf, W. Jäger, Appl. Phys. Lett. 71 (1997) 1329.
  • [12] R.W. Balluffi, A. Brokman, A.H. King, Acta Met. 30 (1982) 1453.
  • [13] F. Philipp, R. Höschen, M. Osaki, G. Möbus and M. Rühle, Ultramicroscopy 56 (1994)1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS1-0006-0070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.