PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Physical simulation of metallurgical processes.

Autorzy
Identyfikatory
Warianty tytułu
Konferencja
XV Physical Metallurgy and Materials Science Conference on Advanced Materials & Technologies AMT'98, Kraków-Krynica, Poland, 17-21 May, 1998
Języki publikacji
EN
Abstrakty
EN
Physical simulation is a way to gain data of materials behaviour characterizing a real process or application, which data can then be used for control of a particular metal working process or for computer simulation. Some 50 years ago the physical simulation was at first applied to study welding process, and recently it has been widely used for a wide variety of processes and applications like continuous casting, hot rolling and forging, thermomechanical treatment, and other. An example related to welding application, is the microfissuring which occurs in multi-bead welds of superalloys. In top layers of the welds fine reheat cracks of liquation or ductility-dip type nucleate in characteristic locations of interbead heat-affected zones. The simulation based on a micromechanism of the microfissures' formation, allows to measure critical strains to fracture during exactly reproduced welding thermal cycles. Hot shortness which frequently occurs during rolling of as-cast metal alloys, can be studied by strain induced crack opening procedure - SICO. Simulating the corner cracking of hot rolled billets, the SICO method allows to gain flow stress data, and measure strains to fracture, at exact strain rates, deformation temperatures, and at correctly reproduced thermal gradients of the real process.
Rocznik
Strony
659--666
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
  • Advanced Materials Analysis, Enschede, Netherlands
  • Advanced Materials Analysis, Enschede, Netherlands
Bibliografia
  • [1] W.F.Savage; ‘A Historical View of Weldability’, in: Welding Metallurgy of Structural Steels, TMS · Warrendale, PA, USA, 1987, p.3.
  • [2] E.F.Nippes & W.F.Savage; Welding Journal, 25 (1946), Res Suppl, p.776-s.
  • [3] E.F.Nippes, L.L.Merrill & W.F.Savage; Welding Journal, 28 (1949), Res Suppl, p.556-s.
  • [4] E.F.Nippes & W.F.Savage; Welding Journal, 28 (1949), Res Suppl, p.599-s.
  • [5] W.F.Savage & C.D.Lundin; Welding Journal, 44 (1965), Res Suppl, p.433-s.
  • [6] -; ‘A Standard Procedure for Hot Cracking Test’, Dynamic Systems Inc, Poestenkill, NY, UGA, 1995; IIW Doc. II-C-042A/95.
  • [7] K.Wilken: ‘Microfissure Test Program: Austenitic Stainess Steel-, Nickel-Base-Alloy- and Nickel-Copper-Alloy- Weld Metal’; BAM, Berlin, Germany, 1993; IIW Doc. IX-H-279/93.
  • [8] D.J.Kotecki: ‘Volumetric Microfissure Determination in Fully Austenitic Stainless Steel Weld Metal’; Lincoln Electric Co, Cleveland, OH, USA, 1994, IIW Doc. IX-H-302/94.
  • [9] S.T.Mandziej & W.C.Chen; ‘Microfissure Susceptibility Study of a Multipass Weld Metal Using Gleeble Thermal/Mechanical Simulator, AMA, Enschede, NL, 1996, IIW Doc. IX-H-378/96.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS1-0006-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.