PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Palaeoenvironmental evolution of the Southern Alps across the Faraoni Level equivalent : new data from the Trento Plateau (Upper Hauterivian, Dolomites, N. Italy)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New stratigraphic and palaeoenvironmental data are presented for the northeastern part of the Trento Plateau (Puez area, Southern Alps, Italy). The studied section corresponds to the upper Hauterivian Balearites balearis and "Pseudothurmannia ohmi" ammonite zones and normal palaeomagnetic chron upper M5. A c. 30-cm-thick bed is identified as the equivalent of the Faraoni Level, based on its position within the Pseudothurmannia mortilleti Subzone, the composition of its ammonite fauna and the peak of a minor positive trend in the [delta]13 Cbulk record. Microfacies and geochemical proxies compare well with those of the southeastern part of the Trento Plateau and indicate palaeoceanographic continuity along the eastern margin of the plateau. The abundances of radiolarians and nannoconids suggest a turnover in the trophic structure from eutrophic conditions around the Faraoni Level equivalent to oligotrophic conditions. Low organic matter and sulphur content and frequent bioturbation indicate a well-oxygenated environment. Ammonite diversity and life-habitat groups document the influence of sea level on the plateau: while epi- and mesopelagic ammonites occur commonly during sea-level highstands, all life-habitat groups become reduced during a sea-level lowstand in the Spathicrioceras seitzi and P. ohmi subzones. The Faraoni event is heralded by a faunal turnover expressed as the diversification of epipelagic ammonites. Palaeoenvironmental conditions along the eastern margin of the Trento Plateau during the Faraoni event contrast with those of the organic-rich black shales in the west. A re-evaluation of the depositional model based on the new results suggests a general water depth of 300-500 m for the plateau. The severe reduction of mesopelagic ammonites during the sea-level lowstand indicates a shallowing towards the epi-/mesopelagic boundary. During the Faraoni event, the eastern areas of the Trento Plateau were located at the upper limit of the oxygen-minimum layer and were thus only occasionally affected by oxygen depletion, whereas the western areas were located well within the upper part of the oxygen-depleted layer.
Rocznik
Strony
89--104
Opis fizyczny
Bibliogr. 75 poz.,
Twórcy
autor
autor
Bibliografia
  • 1. Adatte, T., Arnaud-Vanneau, A., Arnaud, H., Blanc-Aletru, M.C., Bodin, S., Carrio, E., Föllmi, K.B., Godet, A., Raddadi, M.C. and Vermeulen, J. 2005. The Hauterivian – Lower Aptian sequence stratigraphy from Jura Platform to Vocontian Basin: a multidisciplinary approach. Géologie Alpine, série spéciale “colloques et excursions”, 7, 181 p.
  • 2. Arnaud, H. 2005. Sequence stratigraphy interpretation, In: Aadatte, T. et al. (Eds), The Hauterivian – Lower Aptian sequence stratigraphy from Jura platform to Vocontian basin: a multidisciplinary approach. Géologie Alpine, pp. 174–179. Série Spéciale “Colloques et Excursions”, 7.
  • 3. Arthur, M.A., S. Hagerty, W.E. Dean, G.E. Claypool, T. Dawes, D. McManaman, P.A. Meyers and Dunham, K. 1986. A geochemical note: comparison of techniques for obtaining CaCO3, organic carbon and total nitrogen in limestones and shales, In: Rad, U. von and Wise, S.W. (Eds), Initial Reports of the DSDP, 93, 1263–1268.
  • 4. Barrier, E. and Vrielynck, B. 2008. Palaeotectonic maps of the Middle East, CCGM, 14 maps.
  • 5. Baudin, F. 2005. A Late Hauterivian short-lived anoxic event in the Mediterranean Tethys: the “Faraoni Event”. Comptes Rendus Geosciences, 337, 1532–1540.
  • 6. Baudin, F., Bulot, L.G., Cecca, F., Coccioni, R., Gardin, .S. and Renard, M. 1999. Un équivalent du “Niveau Faraoni” dans le bassin du Sud-Est de la France, indice possible d’un événement anoxique fini-hauterivien étendu à la Téthys méditerranéenne. Bulletin de la Société Géologique de France, 170, 487–498.
  • 7. Baudin, F., Cecca, F., Galeotti, S. and Coccioni, R. 2002. Palaeoenvironmental controls of the distribution of organic matter within a Corgrich marker bed (Faraoni Level, uppermost Hauterivian, central Italy). Eclogae geologicae Helvetiae, 95, 1–13
  • 8. Baudin, F., Faraoni, P., Marini, A. and Pallini, G. 1997. Organic matter characterisation of the “Faraoni Level” from Northern Italy (Lessini Mountains and Trento Plateau): comparison with that from Umbria Marche Apennines. Palaeopelagos, 7, 41–51.
  • 9. Bellanca, A., Erba, E., Neri, R., Premoli Silva, I., Sprovieri, M., Tremolada, F. and Verga, D. 2002. Palaeoceanographic significance of the Tethyan “Livello Selli” (early Aptian) from the Hybla Formation, northwestern Sicily: biostratigraphy and high-resolution chemostratigraphic records. Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 175–196.
  • 10. Bersezio, R., Erba, E., Gorza, M. and Riva, A. 2002. BerriasianAptian black shales of the Maiolica Formation (Lombardian Basin, southern Alps, northern Italy): local to global events. Palaeogeography, Palaeoclimatology, Palaeoecology, 180, 253–275.
  • 11. Bodin, S., Godet, A., Föllmi, K.B., Vermeulen, J., Arnaud, H., Strasser, A., Fiet, N. and Adatte, T. 2006. The late Hauterivian Faraoni oceanic anoxic event in the western Tethys: Evidence from phosphorous burial rates. Palaeogeography, Palaeoclimatology, Palaeoecology, 235, 245–264.
  • 12. Bodin, S., Fiet, N., Godet, A., Matera, V., Westermann, S., Clément, A., Janssen, N.M.M., Stille, P. and Föllmi, K.B. 2009. Early Cretaceous (late Berriasian to early Aptian) palaeoceanographic change along the northwestern Tethyan margin (Vocontian Trough, southeastern France): δ13C, δ18O and Sr-isotope belemnite and whole-rock records. Cretaceous Research, 30, 1247–1262.
  • 13. Bodin, S., Godet, A., Matera, V., Steinmann P., Vermeulen, J., Gardin. S., Adatte, T., Coccioni, R. and Föllmi, K.B. 2007. Enrichment of redox-sensitive trace metals (U, V, Mo, As) associated with the late Hauterivian Faraoni oceanic anoxic event. Internation al Journal of earth Sciences, 96, 237–341.
  • 14. Bosellini, A. 1998. Die Geologie der Dolomiten. 192 pp. Verlagsanstalt Athesia, Bozen/Bolzano.
  • 15. Bosellini, A., Gianolla, P. and Stefani, M. 2003. Geology of the Dolomites. Episodes, 26, 181–185.
  • 16. Busnardo, R., Charollais, J., Weidmann, M. and Clavel, B. 2003. Le Crétacé inférieur de la Veveyse de Châtel (Ultrahelvétique des Préalpes externes; canton de Fribourg, Suisse). Revue de Paléobiologie, 22, 1–174.
  • 17. Cecca, F. 1998. Early Cretaceous (pre-Aptian) ammonites of the Mediterranean Tethys: palaeoecology and palaeobiography. Palaeogeography, Palaeoclimatology, Palaeoecology, 138, 305–323.
  • 18. Cecca, F., Marini, A., Pallini, G., Baudin, F. and Begouen, V. 1994a. A guide level of the uppermost (Lower Cretaceous) in the pelagic succession of Umbria – Marche Apennines (Central Italy): the Faraoni Level. Rivista Italiana di Paleontologia e Stratigrafia, 99, 551–568.
  • 19. Cecca, F., Pallini, G., Erba, E., Premoli-Silva, I. and Coccioni, R., 1994b. Hauterivian – Berremian chronostratigraphy based on ammonites, nannofossils, planktonic foraminifera and magnetic chrons from the Mediterranean domain. Cretaceous Research, 15, 457–467.
  • 20. Cecca, F., Faraoni, P., Marini, A. and Pallini, G. 1995. Fieldtrip across the representative sections for the Upper Hauterivian – Barremian ammonite biostratigraphy in the Maiolica exposed at Monte Nerone, Monte Petrano and Monte Catria (Umbria-Marche Apennines). Memorie descrizione della Carta Geologiche d’Italia, 51, 187–211.
  • 21. Cecca, F., Gáleotti, S., Coccioni, R., and Erba, E. 1996. The equivalent of the “Faraoni Level” (Uppermost Hauterivian, Lower Cretaceous) recorded in the eastern part of Trento Plateau (Venetian Southern Alps, Italy). Rivista Italiana di Paleontologia e Stratigrafia, 102, 417–424.
  • 22. Cecca, F., Faraoni, P. and Marini, A. 1998. Latest Hauterivian (Early Cretaceous) ammonites from Umbria-Marche Apennines (Central Italy). Palaeontographia Italica, 85, 61–110.
  • 23. Channell, J.E.T., Cecca, F. and Erba, E. 1995. Correlations of Hauterivian and Barremian (Early Cretaceous) stage boundaries to polarity chrons. Earth and Planetary Science Letters, 134, 125–140.
  • 24. Channel, J.E.T., Erba, E., Muttoni, G. and Tremolada, F. 2000. Early Cretaceous magnetic stratigraphy in the APTICORE drill core and adjacent outcrop at Cismon (Southern Alps, Italy), and correlation to the proposed Barremian-Aptian boundary stratotype. Geological Society of America Bulletin, 112, 1430–1443.
  • 25. Coccioni, R., Baudin, F., Cecca, F., Chiari, M., Galeotti, S., Gardin, S. and Salvini, G. 1998. Integrated stratigraphic, palaeontological, and geochemical analysis of the uppermost Hauterivian Faraoni section in the Fiume Bosso section, Umbria–Marche Apennines, Italy. Cretaceous Research, 19, 1–23.
  • 26. Coccioni, R., Luciani, V. and Marsili, A. 2006. Cretaceous anoxic events and radially elongated chambered planktonic forminifera: paleoecological and paleooceanographic implications.Palaeogeography, Palaeoclimatology,Palaeoecology, 235, 66–92.
  • 27. Company, M., Sandoval, J. and Tavera, J.M. 2002. Ammonite bioevents and zonation of the uppermost Hauterivian Betic Cordillera (SE Spain). Documents du Laboratoire de Géologie de Lyon, 156, 83–84.
  • 28. Company, M., Sandoval, J. and Tavera, J.M. 2003. Ammonite biostratigraphy of the uppermost Hauterivian in the Betic Cordillera (SE Spain). Geobios, 36, 685–694.
  • 29. Company, M., Aguado, R., Sandoval, J., Tavera, J.M., Jimenez de Cisneros, C. and Vera, J.A. 2005. Biotic changes linked to a minor anoxic event (Faraoni Level, Latest Hauterivian, Early Cretaceous). Palaeogeographie, Palaeoclimatology, Palaeoecology, 224, 186–199.
  • 30. Company, M., Sandoval, J., Tavera, J.M., Aoutem, M. and Ettachfini, M. 2008. Barremian ammonite faunas from the western High Atlas, Morocco – biostratigraphy and palaeobiogeography. Cretaceous Research, 29, 9–26.
  • 31. Dercourt, J., Ricou, L.E. and Vrielynck, B., 1993. Atlas Tethys Palaeoenvironmental Maps. p. 307, Gauthier-Villars, Paris, (with 14 maps).
  • 32. Dunham, R.J. 1962. Classification of carbonate rocks according to their depositional texture, In: Ham, W.E. (Ed.), Classification of carbonate rocks - a symposium. pp 108–121. American Association of Petroleum Geologists, Memoire, 1.
  • 33. Emerson, S. and Hedges, J.I. 1988. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography, 3, 621–634.
  • 34. Emiliani, C. 1991. Planktic/planktonic, nektic/nektonic, benthic/benthonic. Journal of Paleontology, 65, 329.
  • 35. Erba, E., Channell, J.E.T., Claps, M., Jones, C., Larson, R., Opdyke, B., Premoli-Silva, I., Riva, A., Salvini, G. and Torricelli, S. 1999. Integrated stratigraphy of the Cismon Apticore (southern Alps, Italy): a “reference section” for the BarremianeAptian interval at low latitudes. Journal of Foraminiferal Research, 29, 371–391.
  • 36. Faraoni, P., Marini, A. and Pallini, G. 1995. The Hauterivian ammonite succession in the Central Apennines, Maiolica formation (Petrano Mt., Cagli -PS). Preliminary results. Palaeopelagos, 5, 227–236.
  • 37. Faraoni, P., Marini, A., Pallini, G. and Pezzoni, N. 1996. The Maiolica Fm. of the Lessini Mts and Central Apennines (North Eastern and Central Italy): a correlation based on new bio-lithostratigraphical data from the uppermost Hauterivian. Palaeopelagos, 6, 249–259.
  • 38. Föllmi, K.B., Bôle, M., Jammet, N., Froidevaux, P., Godet, A., Bodin, S., Adatte, T., Matera, V., Fleitmann, D. and Spangenberg, J.E. 2011. Bridging the Faraoni and Sell oceanic anoxic events: short and repetitive dys- and anaerobic episodes during the late Hauterivian to early Aptian in the central Tethys. Climate of the Past Discussions, 7, 2021–2059.
  • 39. Föllmi, K.B. 2012. Early Cretaceous life, climate and anoxia. Cretaceous Research, 35, 230–257.
  • 40. Fourcade, E., Azema, J., Cecca, F., Dercourt, J., Guiraud, R., Sandulescu, M., Ricou, L.-E., Vrielynck, B., Cottereau, N. and Petzold, M., 1993. Late Tithonian (138 to 135 Ma), In: Dercourt, J., Ricou, L.E. and Vrielynck, B. (Eds), Atlas Tethys Palaeoenvironmental Maps. Beicip-Franlab, RueilMalmaison.
  • 41. Galeotti, S. 1995. The palynoforaminifera of the Faraoni Level and Selli Level of the Umbria-Marche sequence. Palaeopelagios, 5, 3–18.
  • 42. Geyer, O.F. 1993. Die Südalpen zwischen Friaul und Gardasee. Sammlung Geologischer Führer, 86, 576 p. Bornträger; Berlin-Stuttgart.
  • 43. Godet, A., Bodin, S., Föllmi, K.B., Vermeulen, J., Gardin, S., Fiet, N., Adatte, T., Berner, Z., Stüben, D. and Schootbrugge, B.v.d. 2006. Evolution of the marine stable carbonisotope record during the early Cretaceous: A focus on the late Hauterivian and Barremian in the Tethyan Realm. Earth and Planetary Science Letters, 242, 254–271.
  • 44. Godet, A., Bodin, S., Adatte, T. and Föllmi, K.B. 2008. Platform-induced clay-mineral fractionation along a northern Tethyan basin-platform transect: implications for the interpretation of Early Cretaceous climate change (late Hauterivian-early Aptian). Cretaceous Research, 29, 830–847.
  • 45. Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., Graciansky, P-C. de, and Vail, P.R. 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European Basins, In: Graciansky, P-C. de, Hardenbol, J., Jacquin, T. and Vail, P.R. (Eds), Mesozoic and Cenozoic sequence stratigraphy of European Basins. pp. 3–13. SEPM Special Publication, 60.
  • 46. Hennig, S., Weissert, H. and Bulot, L. 1999. C-isotope stratigraphy, a calibration tool between ammonite- and magnetostratigraphy: the Valanginian-Hauterivian transition. Geologica Carpatica, 50, 91–96.
  • 47. Hirano, H. 1993. Phyletic evolution of desmoceratine ammonoids through the Cenomanian-Turonian oceanic anoxic event, In: House, M.R. (Ed.), The Ammonoidea: environment, ecology, and evolutionary change. pp. 267–283. Clarendon Press; Oxford.
  • 48. Hunt, J.M. 1996. Petroleum Geochemistry and Geology. W.H. Freeman and Company; New York.
  • 49. Kirschvink, J.L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal of the Royal Astronomical Society, 62, 699–718.
  • 50. Kruta, I., Landman, N, Rouget, I., Cecca, F. and Tafforeau, P. 2011. The role of ammonites in the Mesozoic food web revealed by jaw preservation. Science, 331, 70–72.
  • 51. Lukeneder, A. 2008. The ecological significance of solitary coral and bivalve epibionts on Lower Cretaceous (Valanginian-Aptian) ammonoids from the Italian Dolomites. Acta Geologica Polonica, 58, 425–436.
  • 52. Lukeneder, A. 2010. Lithostratigraphic definition and stratotype for the Puez Formation: formalisation of the Lower Cre taceous in the Dolomites (S. Tyrol, Italy). Austrian Journal of Earth Sciences, 103, 138–158.
  • 53. Lukeneder, A. 2011. The Biancone and Rosso Ammonitico facies of the northern Trento Plateau (Dolomites, Southern Alps, Italy). Annalen des Naturhistorischen Museum Wien, 113A, 9–33.
  • 54. Lukeneder, A. 2012. New biostratigraphic data of an Upper Hauterivian – Upper Barremian ammonite assemblage from the Dolomites (Southern Alps, Italy). Cretaceous Research, 35, 1–21.
  • 55. Lukeneder, A. and Aspmair, C. 2006. Startigraphic implication of a new Lower Cretaceous ammonoid fauna from the Puez area (Valanginaian – Aptian, Dolomites, Southern Alps, Italy). Geo.Alp, 3, 55–91.
  • 56. Lukeneder, A, Uchman, A, Gaillard, C. and Olivero, D. 2012. The late Barremian Halimedideshorizon of the Dolomites (Southern Alps, Italy). Cretaceous Research, 35, 199–207.
  • 57. Mutterlose, J. and Bornemann, A. 2000. Distribution and facies patterns of Lower Cretaceous sediments in northern Germany: a review. Cretaceous Research, 21, 733–759.
  • 58. .Muttoni, G., Erba, E., Kent, D.V. and Bachtadse, V. 2005. Mesozoic Alpine facies deposition as a result of past latidudinal plate motion. Letters to Nature, 434, 59–63.
  • 59. Ogg, J.G., Ogg, G. and Gradstein, F.M. 2008. The Concise Geologic Time Scale. 177 p. Cambridge University Press; Cambridge.
  • 60. Peters, K.E., Walters, C.C. and Moldowan, J.M. 2005. The Biomarker Guide, Volume 2: Biomarkers and Isotopes in the Petroleum Exploration and Earth History, Second Edition, 1132 p. Cambridge University Press.
  • 61. Pozzi, E. 1993. Die Fossilien der Dolomiten. 176 pp. Tappeiner Verlag; Lana.
  • 62. Reboulet St., Klein J., Barragan R., Company M., GonzalezArreola C., Lukeneder A., Raissossadat S.N., Sandoval J., Szives O., Tavera J.M., Vašíček Z., and Vermeulen J. 2009. Report on the 3rd international Meeting on the IUGS Lower Cretaceous Ammonite Working Group, the “Kilian Group” (Vienna, Austria, 15th April 2008). Cretaceous Research, 30, 496–592.
  • 63. Schootbrugge, B. van de, Föllmi, K.B., Bulot, L.G. and Burns, S.J. 2000: Paleoceanographic changes during the Early Cretaceous (Valanginian-Hauterivian): Evidence from oxygen and carbon stable isotope. Earth and Planetary Science Letters, 181, 15–31.
  • 64. Scotese, C.R. 2001. Atlas of Earth History. Paleomap project. 52 p. Arlington, Texas.
  • 65. Seilacher, A, and Gunji, P.Y. 1993. Morphogenetic countdowns in heteromorphic shells. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 190, 237–265.
  • 66. Spötl, C. and Vennemann, T.W. 2003. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Communications in Mass Spectrometry, 17, 1004–1006.
  • 67. Stampfli, G. and Mosar, J. 1999. The making and becoming of Apulia. Mémoires Science Géologie (University of Padova). Special volume, 3rd Workshop on Alpine Geology, 51, Padova.
  • 68. Stampfli, G.M., Borel, G.D., Marchant, R and Mosar J. 2002. Western Alps geological constraints on western Tethyan reconstructions, In: Rosenbaum, G. and Lister, G.S. 2002 (Eds), Reconstruction of the evolution of the Alpine-Himalayan Orogen. Journal of Virtual Explorer, 8, 77–106.
  • 69. Tremolada, F., Erba, E., bernardi, B.de and Cecca, F. 2009. Calcareous nannofossil fluctuation during the late Hauterivian in the Cismon core (Venetian Alps, northeastern Italy) and in selected sections of the Umbria-Marche Basin (central Italy): paleoceanographic implications of the Faraoni Level. Cretaceous Research, 30, 505–514.
  • 70. Wagner, T. and Dupont, L.M. 1999. Terrestrial Organic Matter in Marine Sediments: Analytical Approaches and Eolian-Marine Records in the Central Equatorial Atlantic, In: Fischer, G. and Wefer, G. (Eds), Use of proxies in paleoceanography, pp. 547–574.
  • 71. Weissert, H.J. 1981. Depositional processes in an ancient pelagic environment: the Lower Cretaceous Maiolica of the Southern Alps. Eclogae Geologicae Helvetiae, 74, 339–352.
  • 72. Weissert, H. 1989. C-isotope stratigraphy, a monitor of paleoenvironmental changes: A case study from the Early Cretaceous. Survey in Geophysics, 10, 1–16.
  • 73. Weissert H., McKenzie J.A. and Channell J.E.T. 1985. Natural variations in the carbon cycle during the Early Cretaceous. In The carbon cycle and atmospheric CO2 : Natural variations Archean to the present. Geophysical Monograph, 32, 531–545.
  • 74. Weisser, H., Joachimski, M. and Sarnthein, M. 2008. Chemostratigraphy. Newsletters on Stratigraphy, 42, 145–179.
  • 75. Westermann, G.E.G. 1990. Ammonoid life and habitat, In: Landman, N., Tanabe, K. and Davis, R.A. (Eds), Ammonoid Paleobiology. pp. 607–707. Plenum Press; New York.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BGPK-3780-4454
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.